Welcome, Professor Vladimir Zhdankin!

profile photo of Vladimir Zhdankin
Vladimir Zhdankin (credit: Flatiron Institute)

Theoretical plasma astrophysicist Vladimir Zhdankin ‘11, PhD ’15, returns to UW–Madison as an assistant professor of physics on January 1, 2024. As a student, Zhdankin worked with Prof. Stas Boldyrev on solar wind turbulence and basic magnetohydrodynamic turbulence, which are relevant for near-Earth types of space plasmas. After graduating, Zhdankin began studying plasma astrophysics of more extreme environments. He first completed a postdoc at CU-Boulder, then a NASA Einstein Fellowship at Princeton University. He joins the department from the Flatiron Institute in New York, where he is currently a Flatiron Research Fellow.

Please give an overview of your research. 

These days, most of my interest is in the field of plasma astrophysics — the application of plasma physics to astrophysical problems. Much of the matter in the universe is in a plasma state, such as stars, the matter around black holes, and the interstellar medium in the galaxy. I’m interested in understanding the plasma processes in those types of systems. My focus is particularly on really high energy systems, like plasmas around black holes or neutron stars, which are dense objects where you could get extreme plasmas where relativistic effects are important. The particles are traveling at very close to the speed of light, and there’s natural particle acceleration occurring in these systems. They also radiate intensely, you could see them from halfway across the universe. There’s a need to know the basic plasma physics in these conditions if you want to interpret observations of those systems. A lot of my work involves doing plasma simulations of turbulence in these extreme parameter regimes.

What are one or two research projects you’ll focus on the most first?

One of them is on making reduced models of plasmas by using non-equilibrium statistical mechanical ideas. Statistical mechanics is one of the core subjects of physics, but it doesn’t really seem to apply to plasmas very often. This is because a lot of plasmas are in this regime that’s called collisionless plasma, where they are knocked out of thermal equilibrium, and then they always exist in a non-thermal state. That’s not what standard statistical mechanics is applicable to. This is one of the problems that I’m studying, whether there is some theoretical framework to study these non-equilibrium plasmas, to understand basic things like: what does it mean for entropy to be produced in these types of plasmas? The important application of this work is to explain how are particles accelerated to really high energies in plasmas. The particle acceleration process is important for explaining cosmic rays which are bombarding the Earth, and then also explaining the highest energy radiation which we see from those systems.

Another thing I’m thinking about these days is plasmas near black holes. In the center of the Milky Way, for example, there’s a supermassive black hole called Sagittarius A*, which was recently imaged a year or two ago by the Event Horizon Telescope. It’s a very famous picture. What you see is the shape of the black hole and then all the plasma in the vicinity, which is in the accretion disk. I’m trying to understand the properties of that turbulent plasma and how to model the type of radiation coming out of the system. And then also whether we should expect neutrinos to be coming out, because you would need to get very high energy protons in order to produce neutrinos. And it’s still an open question of whether or not that happens in these systems.

What attracted you to UW–Madison?

It’s just a perfect match in many ways. It really feels like a place where I’m confident that I could succeed and accomplish my goals, be an effective mentor, and build a successful group. It has all the resources I need, it has the community I need as a plasma physicist to interact with. I think it has a lot to offer to me and likewise, I have a lot to offer to the department there. I’m also really looking forward to the farmers’ market and cheese and things like that. You know, just the culture there.

What is your favorite element and/or elementary particle?

I like the muon. It is just a heavy version of the electron, I don’t remember, something like 100 times more massive or so. It’s funny that such particles exist and this is like the simplest example of one of those fundamental particles which we aren’t really familiar with, it’s just…out there. You could imagine situations where you just replace electron with a muon and then you get slightly different physics out of it.

What hobbies and interests do you have?

They change all the time. But some things I’ve always done: I like running, skiing, bouldering indoors, disk golf, racquet sports, and hiking. (Cross country or downhill skiing?) It’s honestly hard to choose which one I prefer more. In Wisconsin, definitely cross country. If I’m in real mountains, the Alps or the Rockies, then downhill is just an amazing experience.

Welcome, Professor Rogerio Jorge!

profile photo of Rogerio Jorge
Rogerio Jorge

Plasma theorist Rogerio Jorge will join the UW–Madison physics department as an assistant professor on January 1, 2024. He joins us from IST in Lisbon, Portugal, where he is a research professor. Jorge completed his first postdoc at the University of Maryland at College Park, then accepted a Humboldt Fellowship where he worked on the design of fusion energy devices in Greifswald, Germany.

Please give an overview of your research.

My work is twofold: I uncover basic plasma physics phenomena and apply my plasma physics knowledge to the realization of fusion energy. My most recent work is devoted to the design of Stellarators, a type of fusion machine that is free of major instabilities and disruptions. Here, we try to have this clean renewable energy available to the world as fast as possible. While I’ve been doing research on fusion since my PhD studies, where I focused on one type of device called the Tokamak, when I went to the U.S. for my postdoc, I started focusing on the Stellarator. The Stellarator has had a lot of research since the ’60s, but only recently it had a big resurgence.

Thanks to the enormous progress in computational power, I do a lot of simulations for my work. I have worked on several codes, each focusing on a particular physics or engineering problem such as electromagnetic coils, stability, turbulence, and energy retention, which are all used in combination to do designs for new machines. I also collaborate with startups seeking to rapidly develop fusion energy and supervise students and postdocs who are trying to get new designs for new machines. Most of our work is in the realm of classical physics, based on things that people learn while they’re majoring in physics such as electrodynamics and electromagnetism. But then, we couple it with new computational and mathematical techniques, such as machine learning, to streamline our workflow.

We have ideas for Stellarator design that could allow for much better performance than we had before so that the resulting devices achieve higher temperatures and higher densities. However, we should always take into account that theory and experiment may operate on different planes. We are in contact with experimentalists who sometimes tell us, “Your machine is too complicated to build!” And then we have to go back and incorporate their constraints into the design.

Once you arrive in Madison, what are one or two research projects you think your group will focus on first?

Stellarator design and optimization will be one of the main branches, and we have many projects that either could be started or have started in my research group now that we will be continuing in Madison. One of these topics is the confinement of fast particles resulting from fusion reactions, that is, alpha particle dynamics. These must stay confined long enough to continuously feed energy to the plasma, leading to what we call a burning plasma. Right now, the machines we have, they’re still prototypes, meaning that they haven’t made many studies on the physics of burning plasmas. We still need to do a lot of research on it. Once we turn on the machine and start getting a lot of energy, we must be able to predict what’s going on. Burning plasma physics or fast particle physics is one of the major issues. Besides burning plasma physics, I will also continue the work on stellarator optimization, with a particular focus on how machine learning can help us obtain increasingly better designs and how to incorporate experimental constraints into the optimization. Another branch will be the study of basic plasma physics with a particular focus on astrophysical plasmas. During my PhD, I developed a method to accurately incorporate collisions between charged particles in plasmas. I intend to further develop that technique, creating a numerical tool that is easy to use and can be used to predict extreme events in space, as well as predict the behavior of plasmas in the lab, such as the Wisconsin Plasma Physics Laboratory.

What attracted you to Madison? 

Madison has one of the best physics departments in the world, particularly in my area of plasma physics. I believe it’s one of the top places that people think of when they do the sort of work that I do, stellarators and basic plasma physics. This is because there is here a prototype fusion device, a myriad of experimental plasma physics facilities, and people doing state-of-the-art theory and simulation.  Furthermore, when I visited Madison, I loved the views, the lakes, and the overall quality of life.

What is your favorite element or elementary particle?

I think I like the neutrino. It was fun learning about neutrinos in particle physics. They were thought to have no mass, but their flavors can actually oscillate while they travel, and this yields a very tiny but finite amount of mass. Besides, they can go through essentially everything without getting detected, they’re basically invisible! It’s something that you think you know what it is, and you know all the calculations and you understand it, but at the end of the day experiments and the nature tells you that you don’t exactly know what you think you know. There’s more to the story there and they seem so simple, yet there is more to the story.

What hobbies and interests do you have? 

Definitely music. I play the guitar and I like to learn how to play new instruments. I have a few instruments around the house but the one that I am learning how to play right now is the violin. Like the neutrino, even with only four strings, it’s a deceivingly complicated instrument.

Stas Boldyrev earns DOE funding to investigate turbulence in relativistic plasmas

This post was adapted from a U.S. Department of Energy announcement

profile photo of Stas Boldyrev
Stas Boldyrev

 The U.S. Department of Energy (DOE) announced August 23 that it is funding $9.96M to support research in basic plasma science and engineering as well as frontier plasma science experiments at several midscale DOE Collaborative Research Facilities (CRFs) across the nation. The funding will go to 20 universities — including to UW–Madison physics professor Stas Boldyrev — four private companies, and one national laboratory.

The funding will cover 30 awards aimed at supporting basic plasma science research as well as increasing research productivity and participation of U.S. researchers in the CRFs. The awards include three-year single investigator or small group projects as well as short-term, one-time seed funding projects.

“Basic and low temperature plasma science is an important area with many scientific and technological impacts,” said Jean Paul Allain, DOE Associate Director of Science for Fusion Energy Sciences. “The research funded under this FOA will enable the U.S research community to address many fundamental and technological science challenges helping to ensure continued American leadership in this critical field.”

Boldyrev’s award will investigate turbulence in relativistic plasmas, which is more poorly understood compared to its non-relativistic counterpart. Relativistic plasma turbulence exists in extremely hot and energetic natural systems, where plasma and/or particle flow rates approach the speed of light, and it is required to explain radiation spectra of space phenomena such as solar flares or galactic nuclei jets.

“This project intends to develop analytical, phenomenological, and numerical models of turbulent energy cascades, and describe how such turbulence interacts with magnetic fields,” Boldyrev says. “We will concentrate on universal statistical properties of relativistic turbulence, which makes the results applicable to various lab, space, and astronomy environments, where such turbulence is present.”

Vadim Roytershteyn of the Space Science Institute is a co-investigator.

Ke Fang, Ellen Zweibel earn Simons Foundation funding to study electrodynamics in extreme environments

Much of what we understand about fundamental physics is based on experiments done in the convenient “lab” of earth. But our planet is just one location, with its own relatively mild electromagnetic field. Do forces and energies work the same on earth as they do in all corners of the universe?

profile photo of Ellen Zweibel
Ellen Zweibel
profile photo of Ke Fang
Ke Fang

“It’s never guaranteed, as we see many theories break down at extreme environments,” says University of Wisconsin­–Madison physics professor Ke Fang. “For example, a neutron star offers a magnetic field that is trillions of times stronger than on the Earth, and magnetars offer a field that is hundreds of trillions of time stronger. They are natural places to test many fundamental physics theories.”

Fang and UW–Madison astronomy and physics professor Ellen Zweibel are part of a new research collaboration announced August 21 by the Simons Foundation. The Simons Collaboration on Extreme Electrodynamics of Compact Sources (SCEECS) will study how electrodynamics — the interaction of electric currents and magnetic fields — behave in extreme environments in the distant universe using a combination of theory, simulation, and observation.

SCEECS has six main research questions, three centered on understanding electrodynamics in neutron stars and three centered in black holes. Each question pairs at least one senior-level investigator with an early-career co-investigator. Zweibel serves as the lead investigator on her black hole question, and she is paired with Richard Anantua at UT-San Antonio. Fang is co-investigator on a neutron star question, and she is paired with Anatoly Spitkovsky at Princeton.

a wispy, circular set of colorful lines emanate from a center point, indicating the electromagnetic field shooting out of a neutron star
“Particle in cell” simulation of the magnetic field and electric current associated with a spinning and strongly magnetized neutron star (adapted from Philippov and Kramer 2023) | From SCEECS

The neutron star “labs” that Fang is using are amongst the most dense stars in the universe — as small as 10 kilometers in diameter and with densities a million billion times that of water. High energy particles streaming from neutron stars are detectable on Earth, but they tend to be significantly altered by the time they make it here.

“How do those particles survive, in the sense that these extreme energy particles would interact with the surrounding media and produce secondary particles, and how do these interactions play a role in converting what you see on Earth?” Fang’s research asks. “There are also several major questions revealed by recent observations, such as extended TeV gamma-ray halos around neutron stars that are completely new phenomena. We would like to go from first principle physics to understand these phenomena.”

Zweibel’s research will use the extreme environment of spinning black holes, where the electromagnetic field has recently been identified as a major factor in accretion flows, or the movement of gases into the dense center. Her question asks how these accretion flows contribute to magnetizing black holes to form relativistic jets, or powerful emissions of radiation and high-energy particles.

a small black point at the center of the image is flanked by two brown-ish blobs made of flowing lines, like magma flowing down a volcano. Grey parabolic lines also shoot out the top and bottom.
Simulation of the magnetic field threading the black hole and confined by orbiting gas (adapted from Ripperda et al. 2022) | From SCEECS

“Accretion disks, their magnetic fields, and their magnetized jets are found throughout the Universe. They play essential roles in star formation, in the evolution of double, or binary stars, and in many other astrophysical settings,” Zweibel says. “The magnetized accretion disks surrounding black holes are by far the most extreme, and test our theories to the limits. Remarkably, we can circle back to laboratory plasma experiments, including some right here at UW, to study magnetized disks and jets as well.”

SCEECS is housed at Stanford University and includes researchers from 14 other US and international universities. UW­–Madison and Columbia University are the only universities that have more than one investigator in the collaboration. Most of the funding will be used to support investigators, postdoctoral fellows, and graduate students.

The collaboration plans to host an in-person kick-off in October at Stanford with regular virtual meetings throughout the year. Those meetings will be a place where everyone involved in the research, including students, postdocs, and faculty, can provide updates and seek feedback. Larger-scale collaborations such as this one are nothing new to physicists, but those groups are almost always made up of experimental physicists.

“It’s rare for theorists to be in a larger collaboration because we’re usually working alone or in a small group,” Fang says. “This program is exciting because it collects leading theorists in the field from many different institutions and provides a network for us to collaborate with each other.”

The Simons Foundation’s mission is to advance the frontiers of research in mathematics and the basic sciences. The Foundation makes grants in four areas, including Mathematics and Physical Sciences, through which this collaboration is supported.

Federal grants to 2 Wisconsin startups highlight UW’s leading role in fusion energy

a series of metal cylinders connected together in a research lab

A pair of startups with University of Wisconsin–Madison roots — one spun out of Department of Physics technology — have received large federal grants to support their efforts to develop clean energy through fusion.

Realta Fusion and Type One Energy Group, both based in the Madison area, were two of eight ventures from across the nation that the U.S. Department of Energy selected for grants worth millions of dollars to support research and development of fusion energy technologies. Earth-based fusion energy, which seeks to mimic the nuclear fusion that powers the stars, could someday provide a source of clean, safe and virtually limitless power and heat.

UW–Madison has a reputation as one of the leading places in the world for plasma physics and fusion research, and local companies are emerging from that knowledge base. Match that to the deep expertise in manufacturing in the state and we have the key ingredients to make Wisconsin the global hub for fusion. — Physics professor and Realta Fusion Chief Scientific Officer Cary Forest

One-quarter of the companies chosen for this federal investment are based in Wisconsin, reflecting UW–Madison’s leading role in fusion research to generate renewable and reliable energy as the United States strives to reduce its reliance on fossil fuels.

“UW–Madison is creating valuable partnerships in this potentially transformative option for meeting the energy needs of future generations,” says Amy Wendt, associate vice chancellor for research in the physical sciences. “With growth in innovative public-private partnerships for fusion research, we are looking forward to building on UW’s strong history and growing global leadership in the science and technology that will enable the realization of fusion power.”

Both Realta Fusion and Type One Energy Group are pursuing fusion energy based on technologies pioneered by researchers at UW–Madison.

Realta is working to develop fusion energy and heat for industrial applications via a compact but powerful magnetic mirror as an early step toward larger-scale fusion applications. The company was spun out of a federally funded research project housed in the Department of Physics and led by physics professor Cary Forest.

“Wisconsin is extremely well positioned to lead in the commercialization of fusion,” says Forest, who co-founded Realta and serves as its chief science officer.

Read the full story

Peter Weix remembered for his technical, mentoring, and outreach efforts in physics

The Department of Physics mourns the loss of Peter Weix, who passed away January 13, 2023.

Peter began his career as an electronics technician in the U.S. Navy in 1984, where he serv­­ed until 1990. Following his Navy service, he worked as an electronics technician for several companies in California before joining the SLAC National Accelerator Laboratory at Stanford. At SLAC he was a Senior Technician with involvement on both the Stanford Synchrotron Radiation Lightsource and what is now the Linac Coherent Light Source. He also served as a Safety Officer with special emphasis on earthquake safety. Peter and his wife, Sheri, relocated to Wisconsin in 2001 so that Peter could join the Plasma Physics Group at UW–Madison where he worked for more than 20 years and advanced to Senior Instrumentation Specialist.

a man stands behind a lectern with physics gadgets behind him. he is wearing a costume that centers around the theme of time.
Peter Weix at the 2020 The Wonders of Physics annual shows | DEPARTMENT OF PHYSICS

Peter’s work responsibilities at UW spanned a diverse range of technical operations for both the Madison Symmetric Torus (MST) and the Big Red Plasma Ball (BRB), two intermediate-scale experimental facilities for plasma physics research. He oversaw the mechanical and electrical aspects of the MST facility and its high-voltage pulsed-power systems, making sure the facility functioned as required, both technically and safely. He also oversaw all aspects of the high vacuum systems for both MST and BRB. There are many researchers, both in the local group and visiting collaborators, who relied on Peter’s efforts to make sure research projects stayed on track. Additionally, Peter directed key parts of large construction projects, such as the new programmable power supplies that replace MST’s passive capacitor-inductor circuits.

Peter’s involvement with plasma physics research included supervision of around 4-6 undergraduate students at any given time; he mentored an estimated more than 50 students during his time here. The students came from many areas of study, not just science and engineering, and rarely joined the group with the specific skills required to support research activities. Peter welcomed them into the department and provided them all with on-the-job training, teaching them skills and tricks of the trade to allow them to grow and become valuable members of the team.

In addition to his dedicated service to the plasma group, Peter recognized the importance and value of physics outreach. He became a vital member of The Wonders of Physics program for over twenty years. His involvement started when one of the participants was suddenly unavailable at the start of one of the public shows. Peter saved the day by learning on the fly how to operate the complicated audiovisual system. His performance under pressure was impressive, and he was then asked to be the coordinator and main announcer for the approximately 200 shows that followed. Through the years, he provided ideas, elaborate props, personnel, wisdom, and a calming influence on the entire cast. He spent countless hours volunteering his time to the program.

In recognition of his many contributions to the department and university, Peter was awarded the 2022-23 George Ott award for staff excellence, the only department-level staff award given. He will be recognized at the annual Awards and Scholarship banquet in May.

Please visit the department’s tribute page to Peter Weix to submit and/or read stories from Peter’s colleagues.

Profs. John Sarff and Clint Sprott contributed to this piece

Zweibel receives Astronomical Society of the Pacific’s most prestigious award

This post is adapted from an Astronomical Society of the Pacific press release

The Astronomical Society of the Pacific (ASP) has awarded the 2022 Catherine Wolfe Bruce Gold Medal to Ellen Zweibel. It is the most prestigious award given by ASP.

profile photo of Ellen Zweibel
Ellen Zweibel, W. L. Kraushaar professor of astronomy and physics (Photo by Althea Dotzour / UW–Madison)

Zweibel, the William L. Kraushaar professor of astronomy and physics at UW–Madison, was recognized for her contributions to the understanding of astrophysical plasmas, especially those associated with the Sun, stars, galaxies, and galaxy clusters. She has also made major contributions in linking plasma characteristics and behaviors observed in laboratories to astrophysical plasma phenomena occurring in the universe.

Most plasma effects in astrophysical systems are due to an embedded magnetic field. Many of them can be grouped into a small number of basic physical processes: how magnetic fields are generated, how they exchange energy with their environments (sometimes on explosively fast timescales), their role in global instabilities, how they cause a tiny fraction of thermal particles to be accelerated to relativistic energies, and how they mediate the interaction of these relativistic particles (cosmic rays) with their gaseous environments through waves and instabilities on microscales. Although all these processes occur in laboratory plasmas, it is in natural plasmas that they take their most extreme forms. Zweibel and her students and postdocs have used analytical theory and numerical simulations to study the generation and evolution of magnetic fields in the Sun and other stars, in galaxies, and in galaxy clusters, and have researched the effects of high energy cosmic ray particles in all of these environments. Their most recent work centers on the role of cosmic rays in star formation feedback: the self-regulation of the star formation rate in galaxies through energy and momentum input to the ambient medium by the stars themselves.

a gold medal that says astronomical society of the pacific around the rim and has an antiquity-looking woman and other details
The Catherine Wolfe Bruce Gold Medal (photo from the Astronomical Society of the Pacific)

Zweibel has authored over 242 refereed publications with over 8,000 citations. In 2016 she was awarded the American Physical Society’s James Clerk Maxwell Prize for Plasma Physics “For seminal research on the energetics, stability, and dynamics of astrophysical plasmas, including those related to stars and galaxies, and for leadership in linking plasma and other astrophysical phenomena.” She is a member of the National Academy of Sciences.

The Astronomical Society of the Pacific’s Catherine Wolfe Bruce Gold Medal was established in 1898 by Catherine Wolfe Bruce, an American philanthropist and patroness of astronomy. The ASP presents the medal annually to a professional astronomer in recognition of a lifetime of outstanding achievement and contributions to astrophysics research. It was first awarded in 1898 to Simon Newcomb. Previous recipients of the Bruce Medal include Giovanni V. Schiaparelli (1902), Edwin Hubble (1938), Fred Hoyle (1970), and Vera Rubin (2003)

Magnetic fields implicated in the mysterious midlife crisis of stars

a brightly colored sun with a cutout showing into the core, with lines suggesting the spinning motion
Artist’s impression of the spinning interior of a star, generating the stellar magnetic field. This image combines a dynamo simulation of the Sun’s interior with observations of the Sun’s outer atmosphere, where storms and plasma winds are generated. | Credit:

This post was originally published by the Royal Astronomical Society. UW–Madison physics graduate student Bindesh Tripathi is the lead author of the scientific publication.

Middle-aged stars can experience their own kind of midlife crisis, experiencing dramatic breaks in their activity and rotation rates at about the same age as our Sun, according to new research published today in Monthly Notices of the Royal Astronomical Society: Letters. The study provides a new theoretical underpinning for the unexplained breakdown of established techniques for measuring ages of stars past their middle age, and the transition of solar-like stars to a magnetically inactive future.

Astronomers have long known that stars experience a process known as ‘magnetic braking’: a steady stream of charged particles, known as the solar wind, escapes from the star over time, carrying away small amounts of the star’s angular momentum. This slow drain causes stars like our Sun to gradually slow down their rotation over billions of years.

In turn, the slower rotation leads to altered magnetic fields and less stellar activity – the numbers of sunspots, flares, outbursts, and similar phenomena in the atmospheres of stars, which are intrinsically linked to the strengths of their magnetic fields.

profile photo of Bindesh Tripathy
Bindesh Tripathi

This decrease in activity and rotation rate over time is expected to be smooth and predictable because of the gradual loss of angular momentum. The idea gave birth to the tool known as ‘stellar gyrochronology’, which has been widely used over the past two decades to estimate the age of a star from its rotation period.

However recent observations indicate that this intimate relationship breaks down around middle age. The new work, carried out by Bindesh Tripathi at UW–Madison and the Indian Institute of Science Education and Research (IISER) Kolkata, India, provides a novel explanation for this mysterious ailment. Prof. Dibyendu Nandy, and Prof. Soumitro Banerjee of IISER are co-authors.

Using dynamo models of magnetic field generation in stars, the team show that at about the age of the Sun the magnetic field generation mechanism of stars suddenly becomes sub-critical or less efficient. This allows stars to exist in two distinct activity states – a low activity mode and an active mode. A middle aged star like the Sun can often switch to the low activity mode resulting in drastically reduced angular momentum losses by magnetized stellar winds.

Prof. Nandy comments: “This hypothesis of sub-critical magnetic dynamos of solar-like stars provides a self-consistent, unifying physical basis for a diversity of solar-stellar phenomena, such as why stars beyond their midlife do not spin down as fast as in their youth, the breakdown of stellar gyrochronology relations, and recent findings suggesting that the Sun may be transitioning to a magnetically inactive future.”

The new work provides key insights into the existence of low activity episodes in the recent history of the Sun known as grand minima – when hardly any sunspots are seen. The best known of these is perhaps the Maunder Minimum around 1645 to 1715, when very few sunspots were observed.

The team hope that it will also shed light on recent observations indicating that the Sun is comparatively inactive, with crucial implications for the potential long-term future of our own stellar neighbor.

Physics projects funded in first round of UW’s Research Forward initiative

In its inaugural round of funding, the Office of the Vice Chancellor for Research and Graduate Education’s (OVCRGE) Research Forward initiative selected 11 projects, including two with physics department faculty involvement.

OVCRGE hosts Research Forward to stimulate and support highly innovative and groundbreaking research at the University of Wisconsin–Madison. The initiative is supported by the Wisconsin Alumni Research Foundation (WARF) and will provide funding for 1–2 years, depending on the needs and scope of the project.

The two projects from the department are:

Research Forward seeks to support collaborative, multidisciplinary, multi-investigator research projects that are high-risk, high-impact, and transformative. It seeks to fund research projects that have the potential to fundamentally transform a field of study as well as projects that require significant development prior to the submission of applications for external funding. Collaborative research proposals are welcome from within any of the four divisions (Arts & Humanities, Biological Sciences, Physical Sciences, Social Sciences), as are cross-divisional collaborations.

Ellen Zweibel elected AAAS Fellow

Congrats to Astronomy and Physics professor Ellen Zweibel on her election as a Fellow of the American Association for the Advancement of Science. She was elected “for distinguished contributions to quantify the role of magnetic fields in shaping the cosmos on all scales.” Read the full story about all six UW–Madison faculty who earned this honor.