Introducing the Physics Ph.D. Class of 2021

Bucky Badger in a lab coat holding a prism with a rainbow coming out, and Welcome to Physics! above

After record-breaking application numbers and the most unique recruiting season yet, the Department of Physics is pleased to introduce the 30 students of the incoming Ph.D. class of 2021!   

“This year’s incoming Ph.D. class is a remarkably strong and diverse cohort who have overcome truly historic obstacles to join us,” says Ph.D. admissions committee chair, Prof. Shimon Kolkowitz. “I couldn’t be more excited to welcome them to our department and to witness the great work they will accomplish in their time here.” 

602 students applied for one of 91 admissions spots, the most applications the department has received in at least the past decade (based on available graduate school data). 

Some highlights of the incoming class include:   

  • Students coming from 18 U.S. states and three other countries (China, India, and Malaysia) 
  • 22 expressing a preference for experiment, with the rest expressing a preference for theory only, or either/undecided 
  • Eight women 
  • Three Advanced Opportunity Fellowship (AOF) eligible students 
  • Two students who were named 2021 NSF Graduate Research Fellows

This year’s incoming class is also the first to ever participate in “Virtual Visit Days,” thanks to the COVID-19 pandemic. Though perhaps not as exciting as visiting campus in person, admitted students could still meet with faculty to discuss research opportunities, participate in discussions and virtual games nights with current students, and watch videos — many newly-created just for these visits — about the University, the city of Madison, and research in our department. 

“Thank you to all the prospective students for their engagement and enthusiasm throughout the admissions and virtual visit process,” says Michelle Holland, graduate program coordinator. We are beyond thrilled to welcome the Class of 2021 to the Physics Ph.D. Program at UW–Madison as we find our new normal in being together on campus this fall.”   

The department would like to send a huge round of applause to everyone who participated in recruitment this year, especially current graduate students on the recruitment committeeTrevor Oxholm, Abigail Shearrow, Kunal SanwalkaSusmita Mondal, Winnie Wang. We also thank graduate program coordinators Michelle Holland and Jackson Kennedy for organizing and running the virtual visit days, Dan Bradley for once again providing IT solutions to help the admissions process and visit days run smoothly, and Sarah Perdue for website development and video production. 

The department also thanks the Ph.D. admissions committee for their thorough evaluation of the applicants. In addition to Kolkowitz, the committee members are Profs. Keith Bechtol, Stas Boldyrev, Victor Brar, Mark Eriksson, Ke Fang, and Jeff Parker.  

One student accepted our admissions offer but has deferred to 2022.  

  Name     Undergrad Institution   Major Zain Abhari Florida State University Physics Jared Benson University of Vermont Physics; Mathematics Emma Brann Michigan State University Physics Theodore Bucci Youngstown State University Physics/Mathematics Brighton Coe Illinois State University Physics/Computational Physics Caroline Doctor University of Georgia Physics Justin Edwards Texas Tech University Physics Carter Fox University of Michigan-Ann Arbor Physics; Astronomy/Astrophysics Syeda "Minhal" Gardezi Wellesley College Physics Daniel Heimsoth Yale University Astrophysics Tyler Kovach Case Western Reserve University Electrical Engineering; Engineering Physics Caroline "Carrie" Laber-Smith Massachusetts Institute Of Technology Physics Hong Ming Lim Nanyang Technological University Physics Yixiang "Ethan" Lu University of California-Berkeley Physics Justin Marquez Florida State University Physics Michael Martinez University of Chicago Astrophysics, Mathematics Stephen McKay Wheaton College Physics, Mathematics Trevor Nelson University of Massachusetts-Amherst Physics, Math, Astronomy Sam Norrell Indiana University Biology, Chemistry, Math Jesse Osborn University of Nebraska-Lincoln Physics and Mathematics Angelina Partenheimer Truman State University Physics Priyadarshini Rajkumar Texas Tech University Physics Zoe Rechav Truman State University Physics John "Jack" Reily University of Illinois Urbana-Champaign; University of Wisconsin-Madison (M.S.) Engineering Physics; Physics-Quantum Computing (M.S.) Faizah Siddique University of Massachusetts-Amherst Physics Matthew Snyder University of Missouri-Columbia Physics and Mathematics Gabriel Spahn University of Minnesota-Twin Cities Physics and Music Spencer Weeden Carleton College Physics Hongyi Wu University of Maryland-College Park Physics, Mathematics Perri Zilberman University of California-Santa Barbara Physics, Mathematics

Gage Bonner earns 2020 Teaching Award

profile picture of Gage Bonner
profile picture of Gage Bonner
Gage Bonner

Congrats to physics grad student Gage Bonner for earning a 2020 College of Letters & Sciences Continuation of Study teaching award!

This new award category recognizes graduate students in L&S who provided exceptional continuity of instruction support to their department or delivered exceptional student experience in a remote instructional setting during the COVID-19 pandemic.

Bonner was nominated for his work as a TA in Physics 109, Physics in the Arts, by one of the course’s instructors, Prof. Pupa Gilbert. Physics 109 is a quantitative-reasoning course offered to non-science majors, typically serving more than 200 students.

“The students are terrified of physics, and are not quantitative thinkers, thus it is especially important for Physics in the Arts TAs to be kind, friendly, and not intimidating,” Gilbert says. “Gage excels at all these challenges, and teaches masterfully. He is kind, intelligent, knowledgeable, and always in a good mood, making everyone feel comfortable and not intimidated.”

Gilbert nominated Bonner for the Continuation of Study award because of how effectively he adapted to the changes forced by the COVID-19 pandemic. For example, because in-person labs were no longer an option, Gilbert selected online labs, and asked the TAs to develop a series of interactive questions associated with each online experiment to help the students learn by doing. Bonner excelled at developing these questions. She also noted how well he interacts with students through the online Zoom lectures, helping to keep conversations going and being knowledgable, kind and effective with online instruction.

Based on course and TA evaluations, the students agree with Gilbert. Said one student in an evaluation:

“Gage has been a really awesome TA. He makes labs run so smoothly, responds to questions quickly and effectively, and reminds us [of] vital information. He was also super helpful in lectures. Letting the teachers know if there was a technical issue or question. He also made a really friendly and comfortable learning environment even with the restraints of BBC collaborate ultra.”

UW–Madison employs over 2,100 teaching assistants (TAs) across a wide range of disciplines. Their contributions to the classroom, lab, and field are essential to the university’s educational mission. To recognize the excellence of TAs across campus, the Graduate School supports the College of Letters & Science (L&S) in administering these awards.

Bonner has been a graduate student and TA in the department since Fall 2016.

Jimena González named Three Minute Thesis® finalist

Congrats to Jimena González, a physics graduate student in Keith Bechtol’s group, who is one of nine finalists for UW–Madison’s Three Minute Thesis® competition! Watch Jimena’s video on YouTube, and check out all nine finalists’ videos at the UW–Madison 3MT® website. The videos are only available through November 29. The finals will be held on February 3, 2021.

a still from a YouTube video of Jimena giving a presentation
Jimena González presents a virtual 3MT

Chuanhong (Vincent) Liu named to Fall 2020 cohort of the Quantum Information Science and Engineering Network (QISE-NET)

profile photo of Vincent Liu

Graduate student Chuanhong (Vincent) Liu (McDermott Group) has had his project awarded funding through QISE-NET, the Quantum Information Science and Engineering Network. Run through the University of Chicago, QISE-NET is open to any student pursuing an advanced degree in any field of quantum science. Liu and other students in his cohort earn up to three years of support, including funding, mentoring and training at annual workshops. All awardees are paired with a mentoring QISE company or national lab, at which they will complete part of their projects. Liu describes his project, below. Cecilia Vollbrecht, a grad student in Chemistry, also earned this honor. Both Liu and Volbrecht are students in the Wisconsin Quantum Institute.

The Single Flux Quantum (SFQ) digital logic family has been proposed as a scalable approach for the control of next-generation multiqubit arrays. With NIST’s strong track record in the field of SFQ digital logic and the expertise of McDermott’s lab in the superconducting qubit area, we expect to achieve high fidelity SFQ-based qubit control. The successful completion of this research program will represent a major step forward in the development of a scalable quantum-classical interface, a critical component of a fully error-corrected fault-tolerant quantum computer.

New study provides understanding of astrophysical plasma dynamics

plasma from a sun-like star in the upper left corner is coming out like a string that swirls like a whirlpool around a dot in the center of the image

Stars, solar systems, and even entire galaxies form when astrophysical plasma — the flowing, molten mix of ions and electrons that makes up 99% of the universe — orbits around a dense object and attaches, or accretes, on to it. Physicists have developed models to explain the dynamics of this process, but in the absence of sending probes to developing stars, the experimental confirmation has been hard to come by.

In a study published in Physical Review Letters September 25, University of Wisconsin–Madison physicists recreated an astrophysical plasma in the lab, allowing them to investigate the plasma dynamics that explain the accretion disk formation. They found that electrons, not the momentum-carrying ions, dominate the magnetic field dynamics in less dense plasmas, a broad category that includes nearly all laboratory astrophysical plasma experiments.

plasma from a sun-like star in the upper left corner is coming out like a string that swirls like a whirlpool around a dot in the center of the image
An artist’s conception of the accretion disk | Credit: P. Marenfeld/NOAO/AURA/NSF

Like water swirling around and down an open drain, plasma in an accretion disk spins faster nearer the heavy object in the center than further away. As the plasma falls inward, it loses angular momentum. A basic physics principle says that angular momentum needs to be conserved, so the faster rotating plasma must be transferring its momentum away from the center.

“This is an outstanding problem in astrophysics — how does that angular momentum get transported in an accretion disk?” says Ken Flanagan, a postdoctoral researcher with the department of physics at UW–Madison and lead author of the study.

The simplest explanation is friction, but it was ruled out when the corresponding accretion times, in some cases, would be longer than the age of the universe. A model developed by theoretical physicists posits that turbulence, or the chaotic changes in plasma flow speeds, can explain the phenomenon on a more realistic time scale.

“So ad hoc, astrophysicists say, ‘Okay, there’s this much turbulence and that explains it,’” Flanagan says. “Which is good, but you need to call in the plasma physicists to piece together where that turbulence comes from.”

Flanagan and colleagues, including UW­–Madison physics professor Cary Forest, wanted to build off an idea that the turbulence was coming from an intrinsic property of some plasmas known as magnetorotational instability. This instability is seen in plasmas that are flowing fastest near the center and are in the presence of a weak magnetic field.

“And it’s lucky because there are weak magnetic fields all around the universe, and the flow profile in the accretion disks is set by the gravitational force,” Flanagan says. “So, we thought this plasma instability could be responsible for turbulence, and it explains how accretion disks work.”

To investigate if this intrinsic plasma instability explained the observation, the researchers turned to the Big Red Ball (BRB), a three-meter-wide hollow sphere with a 3000 magnets at its inner surface and various probes inside. They activate a plasma by ionizing gas inside the BRB, then applying a current to drive its movement.

a 3-meter-diameter sphere, painted red and with tons of probes all around it
The Big Red Ball is one of several pieces of scientific equipment being used to study the fundamental properties of plasma in order to better understand the universe, where the hot, ionized gas is abundant. | Photo by Jeff Miller / UW–Madison)

Because they had previously been encountering problems in driving very fast flows, they tried a new technique to drive the flow across the entire volume of plasma, as opposed to just the edges. Fortuitously, the BRB had magnetic field probes from a previous experiment still attached, and when they activated the plasma under these conditions, they found that this new flow setup amplified the magnetic field strength with a peak at the center nearly twenty times the baseline strength.

“We didn’t expect to see that at all, because usually in plasma physics the simplest model is to think of plasmas as one fluid with the heavier ions dominating momentum,” Flanagan says. “The results suggested that the plasma is in the Hall regime, which means the electrons and their motion are entirely responsible for the plasma moving around magnetic fields.”

If they were correct in assuming it was the Hall effect that was driving magnetic field amplification, the equations governing magnetic fields and electric currents say that if you drive the current in the opposite direction, the strength of the magnetic field would be canceled out. So, they switched the current and measured the magnetic field strength: it was zero, supporting the Hall regime explanation.

While the results are not directly applicable to the plasma accretion disks around, say, a very dense black hole, they do directly impact the earth-bound experiments that attempt to recreate and study them.

“Nearly all plasma astrophysical experiments operate in the Hall regime, and so this sort of large qualitative effect is something you’re going to have to pay attention to when you make these sorts of flows in laboratory astrophysical plasmas,” Flanagan says. “In that sense, this work has a pretty broad impact for lots of different research areas.”

This research was supported in part by the National Science Foundation (#1518115) and by the U.S. Department of Energy (#DE-SC0018266).

Physics grad students share hands-on physics, art lessons with local fifth graders

picture of a computer screen showing a Zoom meeting where most of the individual boxes are where the students' kaleidoscopes are being held up to the camera
the 4 kits sent home with the students are laid out and opened up, revealing contents like worksheets, laser pointers, mirrors, and lenses
The at-home physics kits featured lessons on light, such as how it functions as both a particle and a wave, and how light changes as it passes through a prism. PHOTO: AEDAN GARDILL

UW–Madison physics grad student Aedan Gardill has been illustrating physics concepts with art for years, such as through his Instagram account, where he shares ink drawings. Earlier this year, he applied for a grant from the Madison Arts Commission to create hidden portraits of women in the physical sciences that could only be revealed by using polarized lenses. He also planned to visit local schools to explain the concept behind his art and help students make their own images based on his technique.

By the time Gardill learned he had been awarded the grant, the pandemic was in full force, and his plans had to change. While he could still present his portraits at the Wisconsin Science Festival, school visits were no longer in the cards.

“With the realization this summer that school was going to most likely be online in the fall, I had to rethink how I was going to use the funding from the grant,” Gardill explains. “And that has morphed into providing at-home, hands-on learning experiences that we’ll lead virtually.”

Hear more from Aedan and a Henderson Elementary School teacher and student he worked with, by reading the full story

Funding for Gardill’s work is provided by a grant from the Madison Arts Commission, with additional funds from the Wisconsin Arts Board, the Optical Society of America, the International Society for Optics and Photonics, and the UW­–Madison Department of Physics, with special thanks to Arts + Literature Laboratory. UW–Madison physics graduate student volunteers include Abby Bishop, Praful Gagrani, Jimena Gonzalez, Ben Harpt, Preston Huft, Brent Mode, Bryan Rubio Perez, Susan Sorensen, and Jessie Thwaites.

Massive halo finally explains stream of gas swirling around the Milky Way

a starscape showing the milky way in the distance and a rendering of the gases surrounding the large magellenic cloud
a starscape showing the milky way in the distance and a rendering of the gases surrounding the large magellenic cloud
The Large and Small Magellanic Clouds as they would appear if the gas around them was visible to the naked eye. | Credits: Scott Lucchini (simulation), Colin Legg (background)

The Large and Small Magellanic Clouds are satellite galaxies of the Milky Way. They are surrounded by a high-velocity gaseous structure called the Magellanic Stream, which consists of gas stripped from both clouds. So far, simulations have been unable to reconcile observations with a complete picture of how the stream was formed. In this Nature week’s issue, numerical simulations carried out at by Scott Lucchini, graduate student at the Physics Department working with Elena D’Onghia, present a model that potentially resolves this conundrum. By embedding the Large Magellanic Cloud in a corona of ionized gas, the researchers were able to simulate the Magellanic Stream accurately and explain its structure. Ellen Zweibel and Chad Bustard are also co-authors of the article.

Read the full UW news story | Read the Nature article


First-year physics grad student uses her disrupted summer – and her science training – to research N95 safety

profile photo of Winnie Wang

Shortly after incoming physics graduate student Winnie Wang attended a UW­–Madison campus visit weekend in February, her plans took an abrupt change due to COVID-19. The University of Massachusetts, where she was studying, closed right before spring break, and she decided to go to Taipei to be with extended family. But first, she needed to follow the regulations in Taiwan and self-isolate for 14 days.

“I chose to be quarantined in a hotel, so I was by myself for two weeks. It was honestly kind of brutal, and for the first five days I was feeling pretty miserable,” Wang recalls. “I’m putting it bluntly, because that misery was what inspired me to do something about it. I was like, ‘Okay, well, why don’t I proactively use some of my free time.’”

profile photo of Winnie Wang
Winnie Wang

Wang, who is from Canada and attended school in the U.S., watched what was happening to the case numbers in those two countries, especially compared to the relatively lower numbers in Taiwan, and started looking for ways to get involved. She posted on Facebook asking if anyone knew groups she could volunteer with, and eventually landed on a group called N95DECON.

According to the group’s website, N95DECON is a volunteer collective of scientists, engineers, clinicians, and students from universities across the U.S. as well as other professionals in the private sector. N95DECON seeks to review, collate, publish, and disseminate scientific information about N95 decontamination to help inform decisions about N95 decontamination and reuse.

“Hospitals use a lot of N95s, and you’ve probably heard of things where people have put masks in microwaves or rice cookers to decontaminate them. And basically, you don’t want to do that,” Wang says. “We looked at the research that’s already out there, looked at what the CDC recommends, and we culminated our findings into papers and seminars for hospitals to use around the world.”

Wang serves as a communications volunteer for the group, meaning she responds to emails and proofreads and edits the group’s publications. She says that when she first started, N95DECON did not have much in the way of formal documentation, so much of her early efforts were spent answering emails from the public asking about reuse procedures. But knowing that N95s were in short supply and time was of the essence, N95DECON worked quickly to put together online seminars that could be viewed by anyone.

“After we organized and recorded the seminars in May and put them on our website so that anyone can watch them, the email team received less email from the general public,” Wang says. “And I’ve moved on now to more literature review.”

N95DECON shared their work largely through the hospital networks of the health professionals that volunteer with the group, as well as through social media and other word-of-mouth. The group will continue to monitor research on best practices for decontaminating and reusing N95 masks and update their recommendations accordingly. Much of their current efforts are focused on translating their papers and seminars.

“We’d have people from all over the world join our seminars and talk about their experiences,” Wang says. “So, another aspect of our outreach is that we do translations. Our goal is to disperse this information around the world, and we’ve translated it into seven languages now.”

Wang plans to continue volunteering with N95DECON after the UW­–Madison academic year begins. She is interested in studying experimental high energy physics for her doctorate.

Dark Energy Survey census of the smallest galaxies hones the search for dark matter

two circles with clusters of stars in them, showing predictions of warm dark matter (fewer stars visible) on the left and cold dark matter (far more stars) on the right

This story is adapted from one originally published by Fermilab

Today, scientists in the Dark Energy Survey — including UW–Madison assistant professor of physics Keith Bechtol and his research group — released results that have been five years in the making. Researchers used the world’s most complete census of dwarf galaxies around our Milky Way galaxy to probe the nature of dark matter, an invisible form of matter that dominates the universe. These new measurements provide information about what dark matter can and cannot be made of.

In particular, the new results constrain the minimum mass of the dark matter particles, as well as the strength of interactions between dark matter and normal matter.

profile photo of keith bechtol
Keith Bechtol

According to these new results, a dark matter particle must be heavier than a zeptoelectronvolt, which is 10-21 electronvolts. That’s one trillionth of a trillionth of the mass of an electron. This study also shows that dark matter’s interactions with normal matter must be roughly 1,000 times weaker than the weak nuclear force. Of the known forces, only gravity is weaker.

These novel measurements used data from the Dark Energy Survey, a cosmological survey designed to study dark energy, the mysterious force driving the accelerated expansion of the universe. In contrast, dark matter is gravitationally attractive, resisting the expansion of the universe and gravitationally binding astronomical systems such as galaxies. The smallest “dwarf” galaxies can have hundreds to thousands of times more dark matter than normal matter. Over the past five years, the Dark Energy Survey has combined with other surveys to more than double the known population of these tiny galaxies. The current total is now over 50.

“The large number of dwarf galaxies that we found orbiting the Milky Way is consistent with expectations from the simplest picture of dark matter — that is, comprising slow-moving particles that interact only through gravity,” Bechtol explained. “In this new paper, we rule out several alternative possibilities for the nature of dark matter.”

profile photo of Mitch McNanna
Mitch McNanna

Dark matter makes up 85% of the matter in the universe, but we have yet to detect it directly in the laboratory. The gravitational effects of dark matter are clearly visible in the motions of stars in galaxies, the clumpy distribution of galaxies in the universe, and even in the amount of lightweight elements. The robust astronomical evidence for the existence of dark matter has motivated many experimental searches here on Earth, using instruments ranging from cryogenic detectors buried deep underground to energetic particle colliders.

“The faintest galaxies are among the most valuable tools we have to learn about dark matter because they are sensitive to several of its fundamental properties all at once,” said Ethan Nadler, the study’s lead author and graduate student at Stanford University and SLAC.

In these multi-year, multi-telescope sky surveys, the raw data comes in the form of tens of thousands high-resolution digital images. But identifying these ultrafaint galaxies, as their description implies, is not as simple as looking at an image and seeing a faint smudge of light. Bechtol and his group, including physics grad student Mitch McNanna, designed the search algorithms needed to identify, with some statistical assurance, which individual stars are part of a dwarf galaxy.

“We worked closely with experts in galaxy formation and particle physics theory to compare the Dark Energy Survey observations with predictions,” Bechtol said. “Part of our job was to determine the sensitivity of our search — how far away from the Earth could we spot a galaxy with only a few hundred stars?”

By combining the observed census of dwarf galaxies with advanced cosmological simulations of the distribution of dark matter around the Milky Way, scientists were able to predict how the physical properties of dark matter would affect the number of small galaxies. Small galaxies form in regions where the dark matter density in the early universe is very slightly above average. Physical processes that smooth out these regions of higher density (if dark matter moves too quickly or gains energy due to interactions with normal matter) or prevent density variations from collapsing to form galaxies (thanks to quantum interference effects) would reduce the number of galaxies observed by the Dark Energy Survey.

“Astrophysical observations provide unique information about the fundamental nature of dark matter, and are complementary to searches for dark matter particles in terrestrial experiments.” Bechtol said. “With the Dark Energy Survey, we continue to learn about the deep connection between particle physics and the growth of cosmic structure, ranging from the vast network of galaxies in the cosmic web, down to smallest individual galaxies.”

two circles with clusters of stars in them, showing predictions of warm dark matter (fewer stars visible) on the left and cold dark matter (far more stars) on the right
This shows the result of two numerical simulations predicting the distribution of dark matter around a galaxy similar to our Milky Way. The left panel assumes that dark matter particles were moving fast in the early universe (warm dark matter), while the right panel assumes that dark matter particles were moving slowly (cold dark matter). The warm dark matter model predicts many fewer small clumps of dark matter surrounding our galaxy and thus many fewer satellite galaxies that inhabit these small clumps of dark matter. By measuring the number of satellite galaxies, scientists can distinguish between these models of dark matter. | Image: Bullock and Boylan-Kolchin (2017); simulations by V. Robles, T. Kelley and B. Bozek, in collaboration with Bullock and Boylan-Kolchin

The Dark Energy Survey is a collaboration of more than 300 scientists from 25 institutions in six countries. For more information about the survey, please visit the experiment’s website.

Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago Funding Authority for Funding and Projects in Brazil, Carlos Chagas Filho Foundation for Research Support of the State of Rio de Janeiro, Brazilian National Council for Scientific and Technological Development and the Ministry of Science and Technology, the German Research Foundation and the collaborating institutions in the Dark Energy Survey.