Welcome, assistant professor Ilya Esterlis

profile photo of Ilya Esterlis
Ilya Esterlis

When Lake Mendota freezes over in the winter and thaws in the spring, those water/ice phase transitions might seem mundane. But, says new assistant professor of physics Ilya Esterlis, interesting things happen during phase transitions, and commonalities exist between phase transitions of any matter.

“That’s very surprising and strange sounding, but it turns out that there’s a very general framework in which to understand [these commonalities],” Esterlis says. “It’s this notion of universality, and by studying phase transitions you’re simultaneously studying a very broad class of materials.”

Esterlis, a condensed matter theorist whose research focuses on materials and phase transitions, joins the department January 1, 2023. He is currently a postdoctoral fellow at Harvard, and joined us for a virtual interview earlier this fall.

Can you please give an overview of your research?

I am a condensed matter theorist, so I study materials, and in particular I try to classify different phases of matter and the phase transitions between those phases of matter. I’m mostly interested in electronic systems, where you have a large macroscopic number of interacting electrons and are trying to understand the kind of phenomena that can emerge when you have that large number of degrees of freedom interacting with one another. And a lot of these things are motivated by experiments — not all of them. There are some more academic questions that I’m interested in investigating and they’re a bit more formal. But I’m also motivated by interesting things that are happening in the lab. Part of my work is not only trying to characterize and understand phases of matter, but also trying to propose ways that different phases could be detected experimentally, how they would manifest themselves in different experimental signatures.

I’m also interested in superconductivity. My PhD work focused a lot on trying to understand the optimal conditions for making superconductors — if you could have every knob at your disposal, what would you do to optimize them? Optimize in this case means: make superconductors that exist at as high of a temperature as possible. Superconductivity is typically a low temperature phenomenon, so there’s a holy grail in condensed matter physics trying to make higher temperature superconductors. Part of my work has been organized around trying to understand what would be even in principle the optimal route towards achieving higher temperature superconductors.

Once you’re in Madison, what are one or two research projects you and your group will focus on?

I will focus a good amount of my research efforts on studying superconductivity, continuing this line of investigation into what the optimal conditions for superconductors are. If you had all the freedom in the world, how would you build the best superconductor that exists to high temperatures and under normal laboratory conditions? Not under extreme, unrealistic conditions but in an everyday parameter regime. And that involves understanding the superconducting state itself. Superconductors are a phase of matter that is distinct from, say, a metal, which is also a good conductor but not a superconductor. But oftentimes to understand superconductors better, one has to understand the state from which they came. That is to say, you take a metal and you cool it down to low temperatures and it goes from being a good conductor to a superconductor. To understand that superconductor, it’s often helpful to understand the metal from which it came at higher temperature. And sometimes those metals can be conventional, like copper wires, but sometimes they can be very unconventional metals and strange for various reasons. One open question is: what is the interplay between superconductivity and unusual metals? If you take a high temperature unusual metal, what is the kind of superconductor that it turns into at lower temperature? And unusual in this context means that it has some properties that are not typical to conventional metals. For instance, there’s predictions for how resistance changes with temperature in a conventional metal but unusual metals have rather different resistance behaviors.

What is your favorite element and/or elementary particle?

Helium is remarkable in that it has a number of unusual properties. For instance, if you cool it down to zero temperature it does not crystallize, it remains a liquid. That’s solely due to quantum mechanics, which is kind of an incredible thing. If you do make it crystallize by applying pressure, then that solid itself also has very interesting properties.

And my favorite elementary particle is the anyon. It’s not elementary, say, in the sense of electrons or quarks. But it’s this really remarkable thing that happens in condensed matter systems where if you take a macroscopic number of electrons and you subject them to a very large magnetic field, then a remarkable thing happens where the behavior of the system, as viewed kind of on macroscopic scales, does not look like the behavior of electrons, it really looks like the behavior of particles called anyons that have fractional electric charge. So they are elementary in condensed matter physics.

What hobbies and interests do you have? 

I really love to play music, guitar specifically. And I have two small kids, two daughters, and I just like hanging out with them.

Welcome, Roman Kuzmin, the Dunson Cheng Assistant Professor of Physics

profile photo of Roman Kuzmin
Roman Kuzmin

In the modern, cutting-edge field of quantum computing, it can be a bit puzzling to hear a researcher relate their work to low-tech slide rules. Yet that is exactly the analogy that Roman Kuzmin uses to describe one of his research goals, creating quantum simulators to model various materials. He also studies superconducting qubits and ways to increase coherence in this class of quantum computer.

Kuzmin, a quantum information and condensed matter scientist, will join the department as an the Dunson Cheng Assistant Professor of Physics on January 1. He is currently a research scientist at the University of Maryland’s Joint Quantum Institute in College Park, Md, and recently joined us for an interview.

Can you please give an overview of your research?

My main fields are quantum information and condensed matter physics. For example, one of my interests is to solve complicated condensed matter problems using new techniques and materials which quantum information science developed. Also, it works in the other direction. I am also trying to improve materials which are used in quantum information. I work in the subfield of superconducting circuits. There are several different directions in quantum information, and the physics department at Wisconsin has many of them already, so I will complement work in the department.

Once you’re in Madison and your lab is up and running, what are the first big one or two big things you want to really focus your energy on

One is in quantum information and quantum computing. So, qubits are artificial atoms or building blocks of a quantum computer. I’m simplifying it, of course, but there are environments which try to destroy coherence. In order to scale up those qubits and make quantum computers larger and larger — because that’s what you need eventually to solve anything, to do something useful with it — you need to mitigate decoherence processes which basically prevent qubits from working long enough. So, I will look at the sources of those decoherence processes and try to make qubits live longer and be longer coherent.

A second project is more on the condensed matter part. I will build very large circuits out of Josephson junctions, inductors and capacitors, and such large circuits behave like some many-body objects. It creates a problem which is very hard to solve because it contains many parts, and these parts interact with each other such that the problem is much more complicated than just the sum of those parts.

What are some applications of your work?

Of course this work is interesting for developing theory and understanding our world. But the application, for example for the many-body system I just described, it’s called the quantum impurity. One of my goals is to use this to create a simulator which can potentially model some useful material. It’s like if you have a quantum computer, you can write a program and it will solve something for you. A slide rule is a physical device that allows you to do complicated, logarithmic calculations, but it’s designed to do only this one calculation. I’m creating kind of a quantum slide rule.

What is your favorite element and/or elementary particle? 

So, I have my favorite circuit element: Josephson junction. (editor’s note: the question did not specify atomic element, so we appreciate this clever answer!). And for elementary particle, the photon, especially microwave photons, because that’s what I use in these circuits to do simulations. They’re very versatile and they’re just cool.

What hobbies and interests do you have?

I like reading, travelling, and juggling.

New technique reveals changing shapes of magnetic noise in space and time

This article was originally published by Princeton Engineering

Electromagnetic noise poses a major problem for communications, prompting wireless carriers to invest heavily in technologies to overcome it. But for a team of scientists exploring the atomic realm, measuring tiny fluctuations in noise could hold the key to discovery.

“Noise is usually thought of as a nuisance, but physicists can learn many things by studying noise,” said Nathalie de Leon, an associate professor of electrical and computer engineering at Princeton University. “By measuring the noise in a material, they can learn its composition, its temperature, how electrons flow and interact with one another, and how spins order to form magnets. It is generally difficult to measure anything about how the noise changes in space or time.”

Using specially designed diamonds, a team of researchers at Princeton and the University of Wisconsin–Madison have developed a technique to measure noise in a material by studying correlations, and they can use this information to learn the spatial structure and time-varying nature of the noise. This technique, which relies on tracking tiny fluctuations in magnetic fields, represents a stark improvement over previous methods that averaged many separate measurements.

a small square chip sits on a metallic microscope stand with green laser light bouncing off of it in places
Using specially designed diamonds with nitrogen-vacancy centers, researchers at Princeton University and the University of Wisconsin-Madison have developed a technique to measure noise in a material by studying correlations, and they can use this information to learn the spatial structure and time-varying nature of the noise. In this image, a diamond with near-surface nitrogen-vacancy centers is illuminated by green laser light from a microscope objective lens | Photo by David Kelly Crow and provided by Princeton University

De Leon is a leader in the fabrication and use of highly controlled diamond structures called nitrogen-vacancy (NV) centers. These NV centers are modifications to a diamond’s lattice of carbon atoms in which a carbon is replaced by a nitrogen atom, and adjacent to it is an empty space, or vacancy, in the molecular structure. Diamonds with NV centers are one of the few tools that can measure changes in magnetic fields at the scale and speed needed for critical experiments in quantum technology and condensed matter physics.

While a single NV center allowed scientists to take detailed readings of magnetic fields, it was only when de Leon’s team worked out a method to harness multiple NV centers simultaneously that they were able to measure the spatial structure of noise in a material. This opens the door to understanding the properties of materials with bizarre quantum behaviors that until now have been analyzed only theoretically, said de Leon, the senior author of a paper describing the technique published online Dec. 22 in the journal Science.

“It’s a fundamentally new technique,” said de Leon. “It’s been clear from a theoretical perspective that it would be very powerful to be able to do this. The audience that I think is most excited about this work is condensed matter theorists, now that there’s this whole world of phenomena they might be able to characterize in a different way.”

One of these phenomena is a quantum spin liquid, a material first explored in theories nearly 50 years ago that has been difficult to characterize experimentally. In a quantum spin liquid, electrons are constantly in flux, in contrast to the solid-state stability that characterizes a typical magnetic material when cooled to a certain temperature.

profile photo of Shimon Kolkowitz
Shimon Kolkowitz

“The challenging thing about a quantum spin liquid is that by definition there’s no static magnetic ordering, so you can’t just map out a magnetic field” the way you would with another type of material, said de Leon. “Until now there’s been essentially no way to directly measure these two-point magnetic field correlators, and what people have instead been doing is trying to find complicated proxies for that measurement.”

By simultaneously measuring magnetic fields at multiple points with diamond sensors, researchers can detect how electrons and their spins are moving across space and time in a material. In developing the new method, the team applied calibrated laser pulses to a diamond containing NV centers, and then detected two spikes of photon counts from a pair of NV centers — a readout of the electron spins at each center at the same point in time. Previous techniques would have taken an average of these measurements, discarding valuable information and making it impossible to distinguish the intrinsic noise of the diamond and its environment from the magnetic field signals generated by a material of interest.

“One of those two spikes is a signal we’re applying, the other is a spike from the local environment, and there’s no way to tell the difference,” said study coauthor Shimon Kolkowitz, an associate professor of physics at the University of Wisconsin–Madison. “But when we look at the correlations, the one that is correlated is from the signal we’re applying and the other is not. And we can measure that, which is something people couldn’t measure before.”

Kolkowitz and de Leon met as Ph.D. students at Harvard University, and have been in touch frequently since then. Their research collaboration arose early in the COVID-19 pandemic, when laboratory research slowed, but long-distance collaboration became more attractive as most interactions took place over Zoom, said de Leon.

Jared Rovny, the study’s lead author and a postdoctoral research associate in de Leon’s group, led both the theoretical and experimental work on the new method. Contributions by Kolkowitz and his team were critical to designing the experiments and understanding the data, said de Leon. The paper’s coauthors also included Ahmed Abdalla and Laura Futamura, who conducted summer research with de Leon’s team in 2021 and 2022, respectively, as interns in the Quantum Undergraduate Research at IBM and Princeton (QURIP) program, which de Leon cofounded in 2019.

The article, Nanoscale covariance magnetometry with diamond quantum sensors, was published online Dec. 22 in Science. Other coauthors were Zhiyang Yuan, a Ph.D. student at Princeton; Mattias Fitzpatrick, who earned a Ph.D. at Princeton in 2019 and was a postdoctoral research fellow in de Leon’s group (now an assistant professor at Dartmouth’s Thayer School of Engineering); and Carter Fox and Matthew Carl Cambria of the University of Wisconsin–Madison. Support for the research was provided in part by the U.S. National Science Foundation, the U.S. Department of Energy, the Princeton Catalysis Initiative and the Princeton Quantum Initiative.

The University of Wisconsin–Madison’s Department of Physics contributed to this article.

Shimon Kolkowitz promoted to Associate Professor

profile photo of Shimon Kolkowitz
Shimon Kolkowitz

Congratulations to Shimon Kolkowitz on his promotion to Associate Professor of Physics with tenure! Professor Kolkowitz is an AMO physicist whose research focuses on ultraprecise atomic clocks and nitrogen vacancy (NV) centers in diamonds, both of which have applications in quantum sensing. He joined the UW–Madison physics faculty as an assistant professor in January 2018. Since then, he has published numerous articles in top journals, including incredibly accurate comparisons of the rate that clocks run this year in the journal Nature.

Department Chair Mark Eriksson emphasizes Kolkowitz’s contributions across all aspects of his work: “Shimon, graduate students, and postdocs here at Wisconsin, have set records with their atomic clock, and at the same time, Shimon has played critically important roles in teaching and service, including guiding our graduate admissions through the pandemic and all that entails.”

Kolkowitz has been named a Packard Fellow, a Sloan Fellow, and has earned an NSF CAREER award, amongst other honors. He is also the Education, Workforce Development, and Outreach Major Activities Lead for Hybrid Quantum Architectures and Networks (HQAN), an NSF QLCI Institute of which UW–Madison is a member.

Opening doors to quantum research experiences with the Open Quantum Initiative

This past winter, Katie Harrison, then a junior physics major at UW–Madison, started thinking about which areas of physics she was interested in studying more in-depth.

“Physics is in general so broad, saying you want to research physics doesn’t really cut it,” Harrison says.

She thought about which classes she enjoyed the most and talked to other students and professors to help figure out what she might focus on. Quantum mechanics was high on her list. During her search for additional learning opportunities, she saw the email about the Open Quantum Initiative (OQI), a new fellowship program run by the Chicago Quantum Exchange (CQE).

“This could be something I’m interested in, right?” Harrison thought. “I’ll apply and see what happens.”

What happened was that Harrison was one of 12 undergraduate students accepted into the inaugural class of OQI Fellows. These students were paired with mentors at CQE member institutions, where they conducted research in quantum science information and engineering. OQI has a goal of connecting students with leaders in academia and industry and increasing their awareness of quantum career opportunities. The ten-week Fellowship ran through August 19.

11 students pose on a rock wall, all students are wearing the same Chicago Quantum Exchange hooded sweatshirt
OQI students attend a wrap-up at the University of Chicago on August 17. Each student presented at a research symposium that day, which also included a career panel from leaders across academia, government, and industry and an opportunity to network. | Photo provided by the Chicago Quantum Exchange

OQI also places an emphasis on establishing diversity, equity, and inclusion as priorities central to the development of the quantum ecosystem. Almost 70% of this year’s fellowship students are Hispanic, Latino, or Black, and half are the first in their family to go to college. In addition, while the field of quantum science and engineering is generally majority-male, the 2022 cohort is half female.

This summer, UW–Madison and the Wisconsin Quantum Institute hosted two students: Harrison with physics professor Baha Balantekin and postdoc Pooja Siwach; and MIT physics and electrical engineering major Kate Arutyunova with engineering physics professor Jennifer Choy, postdoc Maryam Zahedian and graduate student Ricardo Vidrio.

Harrison and Arutyunova met at OQI orientation at IBM’s quantum research lab in New York, and they hit it off immediately. (“We have the most matching energies (of the fellows),” Arutyunova says, with Harrison adding, “The synergy is real.”)

Four people stand in a lab in front of electronics equipment
OQI Fellow Kate Arutyunova with her research mentors. (L-R) Engineering Physics professor Jennifer Choy, graduate student Ricardo Vidrio, Kate Arutyunova, and postdoc Maryam Zahedian. | Photo provided by Kate Arutyunova

Despite their very different research projects — Harrison’s was theoretical and strongly focused on physics, whereas Arutyunova’s was experimental and with an engineering focus — they leaned on each other throughout the summer in Madison. They met at Union South nearly every morning at 7am to read and bounce ideas off each other. Then, after a full day with their respective research groups, they’d head back to Union South until it closed.

Modeling neutrino oscillations

Harrison’s research with Balantekin and Siwach investigated the neutrinos that escape collapsing supernovae cores. Neutrinos have a neutral charge and are relatively small particles, they make it out of cores without interacting with much — and therefore without changing much — so studying them helps physicists understand what is happening inside those stars. However, this is a difficult task because neutrinos oscillate between flavors, or different energy levels, and therefore require a lot of time and resources to calculate on a classical computer.

Harrison’s project, then, was to investigate two types of quantum computing methods, pulse vs circuit based, and determine if one might better fit their problem than the other. Previous studies suggest that pulsed based is likely to be better, but circuit based involves less complicated input calculations.

“I’ve been doing calibrations and calculating the frequencies of the pulses we’ll need to send to our qubits in order to get data that’s as accurate as a classical computer,” Harrison says. “I’m working with the circuit space, the mathematical versions of them, and then I’ll send my work to IBM’s quantum computers and they’ll calculate it and give results back.”

While she didn’t fully complete the project, she did make significant progress.

“(Katie) is very enthusiastic and she has gone a lot further than one would have expected an average undergraduate could have,” Balantekin says. “She started an interesting project, she started getting interesting results. But we are nowhere near the completion of the project, so she will continue working with us next academic year, and hopefully we’ll get interesting results.”

Developing better quantum sensors 

Over on the engineering side of campus, Arutyunova was studying different ways to introduce nitrogen vacancy (NV) centers in diamonds. These atomic-scale defects are useful in quantum sensing and have applications in magnetometry. Previous work in Choy’s group made the NV centers by a method known as nitrogen ion beam implantation. Arutyunova’s project was to compare how a different method, electron beam irradiation, formed the NV centers under different starting nitrogen concentrations in diamond.

Briefly, she would mark an edge of a very tiny (2 x 2 x 0.5 millimeter), nitrogen-containing diamond, and irradiate the sample with a scanning electron microscope. She used confocal microscopy to record the initial distribution of NV centers, then moved the sample to the annealing step, where the diamond is heated up to 1200 celsius in a vacuum annealing furnace. The diamonds are then acid washed and reexamined with the confocal microscope to see if additional NV centers are formed.

“It’s a challenging process as it requires precise coordinate-by-coordinate calculation for exposed areas and extensive knowledge of how to use the scanning electron microscope,” says Arutyunova, who will go back to MIT after the fellowship wraps. “I think I laid down a good foundation for future steps so that the work can be continued in my group.”

Choy adds:

Kate made significant strides in her project and her work has put us on a great path for our continued investigation into effective ways of generating color centers in diamond. In addition to her research contributions, our group has really enjoyed and benefited from her enthusiasm and collaborative spirit. It’s wonderful to see the relationships that Kate has forged with the rest of the group and in particular her mentors, Maryam and Ricardo. We look forward to keeping in touch with Kate on matters related to the project as well as her academic journey.

Beyond the summer fellowship

 Both Harrison and Arutyunova think that this experience has drawn them to the graduate school track, likely with a focus on quantum science. More importantly, it has helped them both to learn what they like about research.

“I would prefer to work on a problem and see the final output rather than a question where I do not have an idea of the application,” Arutyunova says. “And I realized how much I like to collaborate with people, exchange ideas, propose something, and listen to people and what they think about research.”

They also offer similar advice to other undergraduate students who are interested in research: do it, and start early.

“No matter when you start, you’re going to start knowing nothing,” Harrison says. “And if you start sooner, even though it’s scary and you feel like you know even less, you have more time to learn, which is amazing. And get in a research group where they really want you to learn.”

Machine Learning meets Physics

Machine learning and artificial intelligence are certainly not new to physics research — physicists have been using and improving these techniques for several decades.

In the last few years, though, machine learning has been having a bit of an explosion in physics, which makes it a perfect topic on which to collaborate within the department, the university, and even across the world. 

“In the last five years in my field, cosmology, if you look at how many papers are posted, it went from practically zero to one per day or so,” says assistant professor Moritz Münchmeyer. “It’s a very, very active field, but it’s still in an early stage: There are almost no success stories of using machine learning on real data in cosmology.”

Münchmeyer, who joined the department in January, arrived at a good time. Professor Gary Shiu was a driving force in starting the virtual seminar series “Physics ML” early in the pandemic, which now has thousands of people on the mailing list and hundreds attending the weekly or bi-weekly seminars by Zoom. As it turned out, physicists across fields were eager to apply their methods to the study of machine learning techniques. 

“So it was natural in the physics department to organize the people who work on machine learning and bring them together to exchange ideas, to learn from each other, and to get inspired,” Münchmeyer says. “Gary and I decided to start an initiative here to more efficiently focus department activities in machine learning.”

Currently, that initiative includes Münchmeyer, Shiu, Tulika Bose, Sridhara Dasu, Matthew Herndon, and Pupa Gilbert, and their research group members. They watch the Physics ML seminar together, then discuss it afterwards. On weeks that the virtual seminar is not scheduled, the group hosts a local speaker — from physics or elsewhere on campus — who is doing work in the realm of machine learning. 

In the next few years, the Machine Learning group in physics looks to build on the momentum the field currently has. For example, they hope to secure funding to hire postdoctoral fellows who can work within a group or across groups in the department. Also, the hiring of Kyle Cranmer — one of the best-known researchers in machine learning for physics — as Director of the American Family Data Science Institute and as a physics faculty member, will immediately connect machine learning activities in this department with those in computer sciences, statistics, and the Information School, as well other areas on campus.

“There are many people [on campus] actively working on machine learning for the physical sciences, but there was not a lot of communication so far, and we are trying to change that,” Münchmeyer says.

Machine Learning Initiatives in the Department (so far!)

Kevin Black, Tulika Bose, Sridhara Dasu, Matthew Herndon and the CMS collaboration at CERN use machine learning techniques to improve the sensitivity of new physics searches and increase the accuracy of measurements.

Pupa Gilbert uses machine learning to understand patterns in nanocrystal orientations (detected with her synchrotron methods) and fracture mechanics (detected at the atomic scale with molecular dynamics methods developed by her collaborator at MIT).

Moritz Münchmeyer develops machine learning techniques to extract information about fundamental physics from the massive amount of complicated data of current and upcoming cosmological surveys. 

Gary Shiu develops data science methods to tackle computationally complex systems in cosmology, string theory, particle physics, and statistical mechanics. His work suggests that Topological Data Analysis (TDA) can be integrated into machine learning approaches to make AI interpretable — a necessity for learning physical laws from complex, high dimensional data.

Undergraduate quantum science research fellowship launches

This story was originally published by the Chicago Quantum Exchange

The Open Quantum Initiative (OQI), a working group of students, researchers, educators, and leaders across the Chicago Quantum Exchange (CQE), announced the launch of the OQI Undergraduate Fellowship as part of their effort to advocate for and contribute to the development of a diverse and inclusive quantum workforce.

The primary mission of the OQI is to champion the development of a more inclusive quantum community. Science, technology, engineering, and mathematics (STEM) fields remain overwhelmingly white and male—only about 20% of bachelor’s degrees in physics, engineering, and computer science go to women, a mere 6% of all STEM bachelor’s degrees are awarded to African American students, and 12% of all STEM bachelor’s degrees are awarded to Hispanic students. But as the field of quantum science is still relatively new compared to other STEM subjects, groups like the OQI see a chance to make the foundations of the field diverse and accessible to all from the start.

“In many respects, we are building a national workforce from the ground up,” says David Awschalom, the Liew Family Professor in Molecular Engineering and Physics at the University of Chicago, senior scientist at Argonne National Laboratory, director of the Chicago Quantum Exchange, and director of Q-NEXT, a Department of Energy quantum information science center led by Argonne. “There are incredible opportunities here to make the field of quantum engineering as inclusive and equitable as possible from the very beginning, creating a strong ecosystem for the future.”

At the heart of the OQI’s effort is a new fellowship starting in summer 2022. For 10 weeks, fellows will live and work at a CQE member or partner institution, completing a research project in quantum information science and engineering under the guidance of a mentor. Students will have numerous opportunities to interact with the other fellows in their cohort during the summer research period and throughout the following academic year.

Through this fellowship, the students can expand their understanding of quantum science, receive career guidance, and grow their professional networks with leaders in academia and industry. The OQI will also aim to provide future research experiences in subsequent summers, as well as provide opportunities to mentor future fellows, helping to build a larger, diverse quantum community over time.

With the support of CQE’s member and partner institutions, including the University of Chicago, Argonne, Fermilab, University of Illinois Urbana-Champaign, University of Wisconsin-Madison, Northwestern University, and The Ohio State University, along with the NSF Quantum Leap Challenge Institute for Hybrid Quantum Architectures and Networks (HQAN) and Q-NEXT, this fellowship helps to establish diversity, equity, and inclusion as priorities central to the development of the quantum ecosystem.

The OQI launched the fellowship alongside a workshop on September 22 and 23. The OQI workshop, titled “Building a Diverse Quantum Ecosystem,” brought together CQE students, researchers, and professionals from across different institutions, including industry, to discuss the prevailing issues and barriers in quantum information science as the field develops. Institutional changemakers also shared what they have learned from their own efforts to increase representation. A panel on education and workforce development at the upcoming Chicago Quantum Summit on Nov. 4 will continue the discussion on building inclusive onramps for the quantum information science field.

“For quantum science and engineering to achieve its full potential, it must be accessible to all,” says Kayla Lee, Academic Alliance Lead at IBM Quantum and keynote speaker of the OQI workshop. “The OQI Undergraduate Fellowship provides explicit support for historically marginalized communities, which is crucial to increasing quantum engagement in a way that creates a more diverse and equitable field.”

Applications for the OQI Undergraduate Fellowship are open now.

a woman and a man in an optics lab adjust wiring and mirrors

Chicago State University students gain quantum experience through HQAN summer internships

profile photos of Anosh Wasker, Dominique Newell, Gabrielle Jones-Hall, and Ryan Stempek

This story was adapted from one originally published by HQAN

Over the past summer, the NSF Quantum Leap Challenge Institute for Hybrid Quantum Architectures and Networks (HQAN) offered a 12-week “Research Experiences for CSU Students” internship opportunity that provided students and recent graduates from Chicago State University (CSU) with virtual research experiences addressing quantum science topics. In an August 20 online poster session, students presented the results of their summer projects to HQAN’s university and industry partners.

Mallory Conlon, HQAN’s outreach program coordinator and the quantum science outreach program coordinator with the UW–Madison department of physics, explained that this year’s program was the pilot offering. “We wanted to make sure we had the support and activity structures right before expanding this to more [minority serving institutions] (MSIs) and other underrepresented groups across the Midwest. We’re currently evaluating the program and aim to develop an expanded internship for summer 2022.” For the pilot, CSU was chosen as the sole participating MSI because of its proximity to the University of Chicago (one of HQAN’s three university partners), and because of HQAN staff connections to CSU.

The posters presented on August 20 included Anosh Wasker’s “Quantum Games for Pedagogy” (advised by Russell Ceballos of the Chicago Quantum Exchange); Dominique Newell’s “Super-Resolution Microscopy Using Nitrogen Vacancy Centers in Diamond to Analyze the Optical Near Field Diffraction Limit” (advised by Shimon Kolkowitz of the University of Wisconsin–Madison); Gabrielle Jones-Hall’s “Demonstrating Entanglement” (advised by Paul Kwiat of the University of Illinois at Urbana-Champaign (UIUC)); and Ryan Stempek’s “Quantum vs. Classical Boltzmann Machines for Learning a Quantum Circuit” (advised by Bryan Clark of UIUC).

Wasker is pursuing a Master’s at CSU; his long-term goals are to go for a PhD and then work in industry. Over the summer, he developed an air-hockey-inspired computer game that teaches players some of the counterintuitive concepts involved in quantum—particularly the Hong-Ou-Mandel (HOM) effect. He says he’s passionate about quantum science and has noticed that many opportunities are coming up in the field, but that it’s difficult for people to find “access points” into learning about this intimidating topic so that they can seize those opportunities. His summer project was inspired by his belief that learning through play is a powerful way to gain understanding.

Newell recently graduated from CSU with a BS in physics, with a minor in chemistry. She spent the summer studying the propagation of light through a laser beam that travels through a nitrogen vacancy center in diamond, as observed through a confocal microscope. The goal was to locate the zero intensity points above and below the focal plane of a Gaussian beam by using its own electromagnetic field.

Jones-Hall is now in graduate school at Mississippi Valley State University. She’s working towards a Master’s in Bioinformatics but plans to return to quantum after completing that degree, so her internship project—which worked on developing a quantum-themed escape room designed to teach players the concept of quantum entanglement—will be relevant to her later work.

Stempek will graduate in December with a Master’s in computer science and then work in industry. His summer project aimed to show that a quantum Restricted Boltzmann Machine (Q-RBM) has the potential to learn the probability distribution over a set of inputs more accurately than a classical RBM (C-RBM) can for the same circuit. He says the internship was a great opportunity for him to further build his Python skills and problem-solve through the ups and downs of research. “[It] was really beneficial,” he says, “and actually, moving into industry, I feel that I’ll have a greater sense of self-confidence… It was a great experience!”

HQAN is a partnership among the University of Chicago, UIUC, and the University of Wisconsin–Madison and is funded by the National Science Foundation.

New 3D integrated semiconductor qubit saves space without sacrificing performance

Small but mighty, semiconducting qubits are a promising area of research on the road to a fully functional quantum computer. Less than one square micron, thousands of these qubits could fit into the space taken up by one of the current industry-leading superconducting qubit platforms, such as IBM’s or Google’s.

For a quantum computer on the order of tens or hundreds of qubits, that size difference is insignificant. But to get to the millions or billions of qubits needed to use these computers to model quantum physical processes or fold a protein in a matter of minutes, the tiny size of the semiconducting qubits could become a huge advantage.

Except, says Nathan Holman, who graduated from UW–Madison physics professor Mark Eriksson’s group with a PhD in 2020 and is now a scientist with HRL Laboratories, “All those qubits need to be wired up. But the qubits are so small, so how do we get the lines in there?”

In a new study published in NPJ Quantum Information on September 9, Holman and colleagues applied flip chip bonding to 3D integrate superconducting resonators with semiconducting qubits for the first time, freeing up space for the control wires in the process. They then showed that the new chip performs as well as non-integrated ones, meaning that they solved one problem without introducing another.

If quantum computers are to have any chance of outperforming their classical counterparts, their individual qubit units need to be scalable so that millions of qubits can work together. They also need an error correction scheme such as the surface code, which requires a 2D qubit grid and is the current best-proposed scheme.

a three-chip sandwich showing the device architecture.
Proposed approach: the 3D integrated device consists of a superconducting die (top layer) and a semiconducting qubit die (middle layer) brought together though a technique known as flip chip integration. The bottom layer, proposed but not studied experimentally in this work, will serve to enable wiring and readout electronics. This study is the first time that semiconducting qubits (middle layer) and superconducting resonators (top layer) have been integrated in this way, and it frees up space for the wiring needed to control the qubits. | Credit: Holman et al., in NPJ Quantum Information

To attain any 2D tiled structure with current semiconducting devices, it quickly gets to the point where 100% of available surface area is covered by wires — and at that point, it is physically impossible to expand the device’s capacity by adding more qubits.

To try to alleviate the space issue, the researchers applied a 3D integration method developed by their colleagues at MIT. Essentially, the process takes two silicon dies, attaches pillars of the soft metal indium placed onto one, aligns the two dies, and then presses them together. The result is that the wires come in from the top instead of from the side.

“The 3D integration helps you get some of the wiring in in a denser way than you could with the traditional method,” Holman says. “This particular approach has never been done with semiconductor qubits, and I think the big reason why it hadn’t is that it’s just a huge fabrication challenge.”

profile photo of Mark Eriksson
Mark Eriksson
profile photo of Nathan Holman
Nathan Holman

In the second part of their study, the researchers needed to confirm that their new design was functional — and that it didn’t add disadvantages that would negate the spacing success.

The device itself has a cavity with a well-defined resonant frequency, which means that when they probe it with microwave photons at that frequency, the photons transmit through the cavity and are registered by a detector. The qubit itself is coupled to the cavity, which allows the researchers to determine if it is functioning or not: a functioning qubit changes the resonant frequency, and the number of photons detected goes down.

They probed their 3D integrated devices with the microwave photons, and when they expected their qubits to be working, they saw the expected signal. In other words, the new design did not negatively affect device performance.

“Even though there’s all this added complexity, the devices didn’t perform any worse than devices that are easier to make,” Holman says. “I think this work makes it conceivable to go to the next step with this technology, whereas before it was very tricky to imagine past a certain number of qubits.”

Holman emphasizes that this work does not solve all the design and functionality issues currently hampering the success of fully functional quantum computers.

“Even with all the resources and large industry teams working on this problem, it is non-trivial,” Holman says. “It’s exciting, but it’s a long-haul excitement. This work is one more piece of the puzzle.”

The article reports that this work was sponsored in part by the Army Research Office (ARO) under Grant Number W911NF-17-1-0274 (at UW­–Madison) and by the Assistant Secretary of Defense for Research & Engineering under Air Force Contract No. FA8721-05-C-0002 (at MIT Lincoln Laboratory).

 

Correlated errors in quantum computers emphasize need for design changes

Quantum computers could outperform classical computers at many tasks, but only if the errors that are an inevitable part of computational tasks are isolated rather than widespread events.

Now, researchers at the University of Wisconsin–Madison have found evidence that errors are correlated across an entire superconducting quantum computing chip — highlighting a problem that must be acknowledged and addressed in the quest for fault-tolerant quantum computers.

The researchers report their findings in a study published June 16 in the journal Nature, Importantly, their work also points to mitigation strategies.

“I think people have been approaching the problem of error correction in an overly optimistic way, blindly making the assumption that errors are not correlated,” says UW–Madison physics Professor Robert McDermott, senior author of the study. “Our experiments show absolutely that errors are correlated, but as we identify problems and develop a deep physical understanding, we’re going to find ways to work around them.”

Read the full story at https://news.wisc.edu/correlated-errors-in-quantum-computers-emphasize-need-for-design-changes/

artist rendition of a 4-qubit chip with a dotted-line-like cosmic ray hitting it from out of the image frame, lighting up two neighboring qubits "red" to indicate they are affected by the cosmic ray's energy
In this artistic rendering, a high-energy cosmic ray hits the qubit chip, freeing up charge in the chip substrate that disrupts the state of neighboring qubits.