Shimon Kolkowitz earns NSF CAREER award

profile photo of Shimon Kolkowitz
Shimon Kolkowitz

Shimon Kolkowitz has already developed one of the most precise atomic clocks ever. Now, the UW­­–Madison physics professor has been awarded a Faculty Early Career Development (CAREER) award from the National Science Foundation (NSF) to use his atomic clocks to potentially answer some big questions about the physics of our universe.

The five-year, $800,000 in total award will cover research expenses, graduate student support, and outreach projects based on the research.

“I am honored and proud to receive an NSF CAREER award, which will help my research group expand our experimental efforts and build upon our recent results,” Kolkowitz says. “This award will support research into new ways to harness the remarkable precision of optical atomic clocks for exciting physics applications such as searching for dark matter and detecting gravitational waves.”

optical video of a ball of strontium atoms being mutliplexed into 6 separate, smaller spheres of atoms, like pearls along a string
From one sphere of supercooled strontium atoms, Kolkowitz’s group multiplexes them into six separate spheres, each of which can be used as an atomic clock.

Atomic clocks are so precise because they take advantage of the natural vibration frequencies of atoms, which are identical for all atoms of a particular element. Kolkowitz and his research group have developed atomic clocks that can detect the difference in these frequencies between two clocks that would only disagree with each other by one second after 300 billion years, the tiniest detectable frequency changes to date. These clocks, then, can measure effects that shifts their frequency by only 0.00000000000000001%, opening the possibility of using them in the search for new physics.

A significant advancement in Kolkowitz’s clocks is that they are multiplexed, with six or more separate clocks in one

vacuum chamber, effectively placing each clock in the same environment. Mutliplexing means that comparisons between the clocks, and not their individual accuracy, is what matters — and allows the group to use commercially available, robust and portable lasers in their measurements. Though the clocks are not yet ready to be used to detect gravitational waves, Kolkowitz says the current setup “looks a bit like how you would eventually do that,” and will allow him to test out and demonstrate the concept.

In the spirit of the Wisconsin Idea and the NSF’s “broader impacts” to benefit society beyond scientific merit, with this award, Kolkowitz will focus efforts on quantum science outreach with pre-college students.

“We’ll be developing new demos and hands-on activities designed to introduce K-12 students to modern physics concepts,” Kolkowitz says. “We’ll use these activities to engage students at live shows and interactive events as part of The Wonders of Physics outreach program, with an emphasis on reaching rural and Native American communities in Wisconsin.”

NSF established these awards to help scientists and engineers develop simultaneously their contributions to research and education early in their careers. CAREER funds are awarded by the federal agency to junior-level faculty at colleges and universities.

Shimon Kolkowitz awarded two grants to push optical atomic clocks past the standard quantum limit

Optical atomic clocks are already the gold standard for precision timekeeping, keeping time so accurately that they would only lose one second every 14 billion years. Still, they could be made to be even more precise if they could be pushed past the current limits imposed on them by quantum mechanics.

With two new grants from the U.S. Army Research Office, an element of the U.S. Army Combat Capabilities Development Command’s Army Research Laboratory, UW–Madison physics professor Shimon Kolkowitz proposes to introduce quantum entanglement — where atoms interact with each other even when physically distant — to optical atomic clocks. The improved clocks would allow researchers to ask questions about fundamental physics, and they have applications in improving quantum computing and GPS.

Atomic clocks are so precise because they take advantage of the natural vibration frequencies of atoms, which are identical for all atoms of a particular element. These clocks operate at or near the standard quantum limit, a fundamental limit on performance imposed on clocks where the atoms are all independent of each other. The only way to push the clocks past that limit is to achieve entangled states, strange quantum states where the atoms are no longer independent and they become intertwined.

a cartoon showing the atoms in their pancakes as described in the text“That turns out to be hard for a number of reasons. Entanglement requires these atoms to interact with each other, but a good clock requires them not to interact with each other or anything else,” Kolkowitz says. “So, you need to engineer a situation where you can make the atoms interact strongly, but you can also switch those interactions off. And those are some of the same requirements that are necessary for quantum computing.”

Kolkowitz is already building an optical atomic clock in his lab, albeit one that is not yet using entangled states. To make the clock, they first laser-cool strontium atoms to one millionth of one degree Celsius above absolute zero, then load the atoms into an optical lattice. In the lattice, the atoms are separated into what is effectively a tiny stack of pancakes — each atom can move around within their own flat disk, but they cannot jump into another pancake.

Though the atoms’ are stuck in their own pancake, they can interact with each other if their electrons are highly excited. This type of atom, known as Rydberg atoms, becomes close to one million times larger than an unexcited counterpart because the excited electron can be microns away from the nucleus.

“It’s kind of crazy that a single atom can be that big, and when you make them that much bigger, they interact much more strongly with each other than they do in their ground states,” Kolkowitz says. “Basically it means you can go from the atoms not interacting at all to interacting very strongly. That’s exactly what you want for quantum computing, and it’s what you want for this atomic clock.”

With the two ARO grants, Kolkowitz expects to generate Rydberg atoms in his lab’s atomic clock. One of the grants, a Defense University Research Instrumentation Program (DURIP), will fund the specialized UV laser that generates the high energy photons needed to excite the atoms into the highly excited Rydberg states. The second grant will fund personnel and other supplies. Kolkowitz will collaborate with UW–Madison physics professor Mark Saffman, who, along with physics professor Thad Walker, pioneered the use of Rydberg atoms for quantum computing.

In addition to being useful for developing new approaches to ask questions about fundamental physics in his research lab, these ultraprecise atomic clocks are of interest to the Department of Defense for atomic clock-based technologies such as GPS, and because they can be used to precisely map Earth’s gravity.