Welcome, assistant professor Ilya Esterlis

profile photo of Ilya Esterlis
Ilya Esterlis

When Lake Mendota freezes over in the winter and thaws in the spring, those water/ice phase transitions might seem mundane. But, says new assistant professor of physics Ilya Esterlis, interesting things happen during phase transitions, and commonalities exist between phase transitions of any matter.

“That’s very surprising and strange sounding, but it turns out that there’s a very general framework in which to understand [these commonalities],” Esterlis says. “It’s this notion of universality, and by studying phase transitions you’re simultaneously studying a very broad class of materials.”

Esterlis, a condensed matter theorist whose research focuses on materials and phase transitions, joins the department January 1, 2023. He is currently a postdoctoral fellow at Harvard, and joined us for a virtual interview earlier this fall.

Can you please give an overview of your research?

I am a condensed matter theorist, so I study materials, and in particular I try to classify different phases of matter and the phase transitions between those phases of matter. I’m mostly interested in electronic systems, where you have a large macroscopic number of interacting electrons and are trying to understand the kind of phenomena that can emerge when you have that large number of degrees of freedom interacting with one another. And a lot of these things are motivated by experiments — not all of them. There are some more academic questions that I’m interested in investigating and they’re a bit more formal. But I’m also motivated by interesting things that are happening in the lab. Part of my work is not only trying to characterize and understand phases of matter, but also trying to propose ways that different phases could be detected experimentally, how they would manifest themselves in different experimental signatures.

I’m also interested in superconductivity. My PhD work focused a lot on trying to understand the optimal conditions for making superconductors — if you could have every knob at your disposal, what would you do to optimize them? Optimize in this case means: make superconductors that exist at as high of a temperature as possible. Superconductivity is typically a low temperature phenomenon, so there’s a holy grail in condensed matter physics trying to make higher temperature superconductors. Part of my work has been organized around trying to understand what would be even in principle the optimal route towards achieving higher temperature superconductors.

Once you’re in Madison, what are one or two research projects you and your group will focus on?

I will focus a good amount of my research efforts on studying superconductivity, continuing this line of investigation into what the optimal conditions for superconductors are. If you had all the freedom in the world, how would you build the best superconductor that exists to high temperatures and under normal laboratory conditions? Not under extreme, unrealistic conditions but in an everyday parameter regime. And that involves understanding the superconducting state itself. Superconductors are a phase of matter that is distinct from, say, a metal, which is also a good conductor but not a superconductor. But oftentimes to understand superconductors better, one has to understand the state from which they came. That is to say, you take a metal and you cool it down to low temperatures and it goes from being a good conductor to a superconductor. To understand that superconductor, it’s often helpful to understand the metal from which it came at higher temperature. And sometimes those metals can be conventional, like copper wires, but sometimes they can be very unconventional metals and strange for various reasons. One open question is: what is the interplay between superconductivity and unusual metals? If you take a high temperature unusual metal, what is the kind of superconductor that it turns into at lower temperature? And unusual in this context means that it has some properties that are not typical to conventional metals. For instance, there’s predictions for how resistance changes with temperature in a conventional metal but unusual metals have rather different resistance behaviors.

What is your favorite element and/or elementary particle?

Helium is remarkable in that it has a number of unusual properties. For instance, if you cool it down to zero temperature it does not crystallize, it remains a liquid. That’s solely due to quantum mechanics, which is kind of an incredible thing. If you do make it crystallize by applying pressure, then that solid itself also has very interesting properties.

And my favorite elementary particle is the anyon. It’s not elementary, say, in the sense of electrons or quarks. But it’s this really remarkable thing that happens in condensed matter systems where if you take a macroscopic number of electrons and you subject them to a very large magnetic field, then a remarkable thing happens where the behavior of the system, as viewed kind of on macroscopic scales, does not look like the behavior of electrons, it really looks like the behavior of particles called anyons that have fractional electric charge. So they are elementary in condensed matter physics.

What hobbies and interests do you have? 

I really love to play music, guitar specifically. And I have two small kids, two daughters, and I just like hanging out with them.

Welcome, Roman Kuzmin, the Dunson Cheng Assistant Professor of Physics

profile photo of Roman Kuzmin
Roman Kuzmin

In the modern, cutting-edge field of quantum computing, it can be a bit puzzling to hear a researcher relate their work to low-tech slide rules. Yet that is exactly the analogy that Roman Kuzmin uses to describe one of his research goals, creating quantum simulators to model various materials. He also studies superconducting qubits and ways to increase coherence in this class of quantum computer.

Kuzmin, a quantum information and condensed matter scientist, will join the department as an the Dunson Cheng Assistant Professor of Physics on January 1. He is currently a research scientist at the University of Maryland’s Joint Quantum Institute in College Park, Md, and recently joined us for an interview.

Can you please give an overview of your research?

My main fields are quantum information and condensed matter physics. For example, one of my interests is to solve complicated condensed matter problems using new techniques and materials which quantum information science developed. Also, it works in the other direction. I am also trying to improve materials which are used in quantum information. I work in the subfield of superconducting circuits. There are several different directions in quantum information, and the physics department at Wisconsin has many of them already, so I will complement work in the department.

Once you’re in Madison and your lab is up and running, what are the first big one or two big things you want to really focus your energy on

One is in quantum information and quantum computing. So, qubits are artificial atoms or building blocks of a quantum computer. I’m simplifying it, of course, but there are environments which try to destroy coherence. In order to scale up those qubits and make quantum computers larger and larger — because that’s what you need eventually to solve anything, to do something useful with it — you need to mitigate decoherence processes which basically prevent qubits from working long enough. So, I will look at the sources of those decoherence processes and try to make qubits live longer and be longer coherent.

A second project is more on the condensed matter part. I will build very large circuits out of Josephson junctions, inductors and capacitors, and such large circuits behave like some many-body objects. It creates a problem which is very hard to solve because it contains many parts, and these parts interact with each other such that the problem is much more complicated than just the sum of those parts.

What are some applications of your work?

Of course this work is interesting for developing theory and understanding our world. But the application, for example for the many-body system I just described, it’s called the quantum impurity. One of my goals is to use this to create a simulator which can potentially model some useful material. It’s like if you have a quantum computer, you can write a program and it will solve something for you. A slide rule is a physical device that allows you to do complicated, logarithmic calculations, but it’s designed to do only this one calculation. I’m creating kind of a quantum slide rule.

What is your favorite element and/or elementary particle? 

So, I have my favorite circuit element: Josephson junction. (editor’s note: the question did not specify atomic element, so we appreciate this clever answer!). And for elementary particle, the photon, especially microwave photons, because that’s what I use in these circuits to do simulations. They’re very versatile and they’re just cool.

What hobbies and interests do you have?

I like reading, travelling, and juggling.

UW Physics alum Kyle Cranmer chosen to lead American Family Insurance Data Science Institute

Cramer, who received his PhD in Physics in 2005 from UW–Madison, will be a faculty member in the Department of Physics in addition to Director of the American Family Data Science Institute

 

This story was originally published by University Communications

Kyle Cranmer, a University of Wisconsin–Madison alumnus who played a significant role in the discovery of the Higgs boson, will become the next director of the American Family Insurance Data Science Institute.

“We are excited to welcome Kyle back to UW–Madison, where he earned his PhD in physics in 2005,” says Amy Wendt, associate vice chancellor for research in the physical sciences. “Kyle brings a background to the position of director that will facilitate research synergies throughout campus, connecting data scientists and domain experts working to address present-day challenges ranging from health care to education, the sciences and beyond.”

Founded in 2019, the institute is working to advance discoveries that benefit society through data science research, the translation of fundamental research into practical applications, and collaboration across disciplines. The institute is a campus focal point for integrating data science into research, and one of its top priorities is to build a thriving data science community at UW–Madison.

Cranmer is currently a physics professor at New York University and will assume leadership of the institute on July 1, 2022, joining the faculty in the UW–Madison Department of Physics, with an affiliate appointment in Statistics. Brian Yandell, the David R. Anderson Founding Director of the data science institute, has served since 2019.

Cranmer arrived at data science through his contributions to the search for the Higgs boson, a fundamental particle that in the 1960s had been theorized to exist and is responsible for giving objects in the universe their mass.

Finding evidence for the particle required navigating enormous amounts of data generated by trillions of high-energy particle collisions. Cranmer developed a method for collaborative statistical modeling that allowed thousands of scientists to work together to seek, and eventually find, strong evidence for the Higgs boson in 2012.

Kyle Cranmer stands next to a statue of Einstein sitting
Drawing on his experiences reaching across traditional academic boundaries, Cranmer aims to build partnerships between people working on data science methodology and those working in the humanities and the natural, physical and social sciences. | CONTRIBUTED PHOTO

“Shortly after the discovery, I pivoted to thinking more broadly about data science and machine learning for the physical sciences, identifying synergies and opportunities, and shaping that discussion internationally,” says Cranmer. His research has expanded beyond particle physics and is influencing astrophysics, cosmology, computational neuroscience, evolutionary biology and other fields.

At NYU, Cranmer is executive director of the Moore-Sloan Data Science Environment, associated faculty at the Center for Data Science, and is affiliated with the core machine learning group. His awards and honors include the Presidential Early Career Award for Science and Engineering in 2007 and the National Science Foundation’s Career Award in 2009. He was elected a 2021 Fellow of the American Physical Society.

Understanding and addressing the impact data science has on society, and the disproportionate effects it can have on marginalized people, is central to Cranmer’s vision.

One of Cranmer’s goals for the American Family Insurance Data Science Institute is to broaden engagement in data science across campus. Drawing on his own experiences reaching across traditional academic boundaries, he aims to build partnerships between people working on data science methodology and those working in the humanities and the natural, physical and social sciences. Understanding and addressing the impact data science has on society, and the disproportionate effects it can have on marginalized people, is central to his vision for this work.

“Issues around equity, inclusion and bias, and how that impacts society, those are very real problems I think everyone can appreciate,” says Cranmer. “But the way that they manifest themselves technically is much more subtle. Raising awareness of just how subtle and challenging those problems are, I think, is going to be useful for broadening the discussion across campus.”

Cranmer grew up in Arkansas and was in the first graduating class of a public, residential high school for math, science and the arts. He describes the school as a “melting pot” where students interested in computer science, physics, math and engineering collaborated on projects that today might be considered data science. Frustrated by a lack of extracurricular activities at his brand-new school, Cranmer got involved in school politics and student government.

“That was one of my first calls for leadership,” he says. “I came into the school and there was nothing set up at all — no student clubs, no activities. That was a very influential moment for me — realizing that you can be part of the solution and shape the environment around you to make it better.”

Cranmer looks forward to connecting and sharing ideas with people and research centers at UW–Madison. He stresses the importance of building trust, both within and outside the university, by demonstrating the potential for data science to positively affect people’s lives and the world.

“With experience as a national leader in data science, Kyle is well prepared to guide the institute in partnerships with enterprise thought leaders,” says Wendt. “His own research focus on data science methods that broaden participation to advance discovery in particle physics is truly rooted in the Wisconsin Idea.”

For Cranmer, contributing to the Wisconsin Idea is an exciting aspect of his new role. He sees opportunities at UW–Madison to engage with the community in research, such as working with the Division of Extension and farmers on problems like agricultural sustainability, carbon capture and climate change.

“This kind of capability is very, very unique, and there are several different entry points for the Data Science Institute to be involved in such research,” says Cranmer. “The role of data science would be really compelling.”

Following his years of experience shaping the first wave of data science at NYU, Cranmer looks forward to leading an institute that is well positioned to have real-world impact.

“I think that’s a pretty exciting thing to be a part of.”

Willy Haeberli remembered as physicist, teacher, and museum supporter

photo of Willy Haeberli
Willy Haeberli in 2013 | Credit: Pupa Gilbert

University of Wisconsin–Madison Professor Emeritus Willy Haeberli passed away October 4, 2021. He was 96.

Born in Zurich, Switzerland on June 17, 1925, Haeberli received his PhD from the University of Basel (Switzerland) in 1952. He joined the faculty of UW–Madison in 1956, retiring in 2005.

Haeberli was a world-class experimental nuclear physicist. His research focused on studying spin effects in nuclear processes and in fundamental interactions. He and his collaborators developed spin-polarized gas targets of atomic hydrogen and deuterium. These “Haeberli cells” were used in many experiments worldwide including the Indiana University Cyclotron Facility, Brookhaven National Laboratory, and DESY Laboratory in Germany, and they were crucial for the success of those experiments.

Haeberli was the Raymond G. Herb Professor of Physics and a Hilldale Professor. He was elected to the American Academy of Arts and Sciences and the National Academy of Sciences, and he won the American Physical Society’s Bonner Prize in nuclear physics in 1979.

In addition to his scientific achievements, Haeberli was an accomplished teacher. He taught physics courses at UW–Madison for 49 years and developed the popular course Physics 109: Physics in the Arts, with Prof. Ugo Camerini. Physics in the Arts has been offered successfully and continuously since 1969, and has been emulated by tens of universities across the country. In the last five years before retiring, he co-taught the course with Prof. Pupa Gilbert. After he retired, Gilbert convinced him to co-write a textbook for Physics in the Arts, published by Academic Press-Elsevier in 2008, and 2011, translated into Chinese and published by Tsinghua University Press in 2011.

“Willy is a giant in my life. He was career changing, life changing, teaching changing, everything. Just the most amazing person I could have ever met,” Gilbert says. “He was, until the last day, my best friend ever, and the closest thing to a father figure I have ever had.”

Gilbert says that Haeberli’s interest in Physics in the Arts may have stemmed from his musician days — he played the flute in a quartet in college — and his wife’s passion for the figurative arts. She continues:

He always loved a lot more the physics of sound compared to the physics of light and color. He and I had feisty disagreements about the physics of light, and I enjoyed every one of them. Very often before classes I would come up with questions, and he could always, always answer them and pacify me. The last one was last spring, when I was teaching sound, and started wondering: Okay, we know that the speed of sound changes dramatically with temperature, but does the frequency change too? In other words, does a tuning fork sound different indoors or outdoors in Madison’s winters? I looked into this seemingly trivial question and could not find any answer I could trust to be right. Until I asked Willy, who (of course!) knew the answer right away, and charmingly explained that the wavelength and the speed of sound vary with temperature for a guitar string or a tuning fork, but the frequency does not. I will miss these elegant answers tremendously!

Haeberli recently made a significant donation to the Ingersoll Physics Museum, which allows for new exhibits to be developed, allows for current exhibits to be improved, and helps fund the docents program which provides tours for visiting school groups. He and his late wife, Dr. Gabriele Haberland, also supported the Madison Museum of Contemporary Art, UW­–Madison’s Chazen Museum, and Tandem Press with generous gifts.

Several current and emeritus department members shared their memories of Willy. Please visit the Willy Haeberli tribute page to read those stories. The Wisconsin State Journal also ran an obituary.

Many thanks to Profs. Pupa Gilbert and Baha Balantekin for helping with this obituary

Yang Bai promoted to full professor

Profile photo of Yang Bai
Yang Bai

The Department of Physics is pleased to announce that Prof. Yang Bai has been promoted to the rank of full professor.

“It is my pleasure and honor as Dean to approve Prof. Yang Bai’s promotion to Full Professor. His creativity and impressive breadth in particle physics research make him a leader not only on dark matter, but also more generally on Beyond-the-Standard-Model Physics,” says Eric Wilcots, Dean of the College of Letters & Science. “He is also a valued teacher, appreciated by students especially at the graduate level. Graduate students and junior researchers in Madison are in good hands.”

Bai joined the department in 2012, and was promoted to associate professor in 2017. In addition to his robust and well-funded research program, he has trained several successful graduate students, taught all levels of departmental courses, and served on several departmental and university committees.

“Professor Yang Bai is widely recognized as one of the leading theoretical particle physicists of his generation with a broad and vigorous research program, covering both the collider-related frontiers and the cosmic frontier. His work includes significant contributions in essentially every area related to dark matter,” says Sridhara Dasu, professor and department chair. “The Physics Department very strongly endorses the promotion of Yang Bai to Full Professor.”

Congrats, Prof. Bai on this well-earned recognition!

 

Deniz Yavuz announced as Vilas Associate

The Office of the Vice Chancellor for Research and Graduate Education has announced 23 faculty winners of the Vilas Associates Competition, including physics professor Deniz Yavuz. The Vilas Associates Competition recognizes new and ongoing research of the highest quality and significance.

The award is funded by the William F. Vilas Estate Trust.

Recipients are chosen competitively by the divisional research committees on the basis of a detailed proposal. Winners receive up to two-ninths of research salary support (including the associated fringe costs) for both summers 2021 and 2022, as well as a $12,500 flexible research fund in each of the two fiscal years. Faculty paid on an annual basis are not eligible for the summer salary support but are eligible for the flexible fund portion of this award.

Physics alum, professor emeritus Barney Webb remembered for his many contributions to the University and his field

University of Wisconsin–Madison Professor Emeritus Maurice Barnett “Barney” Webb passed away January 15, 2021 in Middleton, WI. He was 94.

Born and raised in Neenah, WI in 1926, Professor Webb earned his both his bachelor’s (’50) and doctoral (’56) degrees from the UW–Madison Physics Department. After graduating, he went to work at General Electric Research Laboratory as a staff scientist. In 1961, he returned to UW–Madison as a tenured Associate Professor of Physics.

A 1996 celebration of Barney Webb (front row, center) and his career was attended by many students and colleagues. From left to right: Jim Schilling, Ray Phaneuf, Art Kotz, Bill Weber, Bill Packard, Barney, Ed Conrad, Bill Unertl, John Unguris, Brian Swartzentruber, Liz Moog, Max Lagally | Photo provided by Jim Schilling

Barney served as Department Chair from 1971-1973, taking the reins of a department that had been traumatized by the 1970 Sterling Hall bombing. In 1977, he was named chair of the University Committee, the Executive Committee of the faculty and the most important and visible manifestation of faculty governance at UW–Madison. From 1985-1990, he served as Chair of the UW–Madison Athletic Board. He was an Emeritus Professor with the department since his retirement in 2001.

Remarkably, Barney was as prominent in the scientific community as he was on campus. His research interests included surface physics, low-energy electron diffraction, and scanning tunneling microscopy. In 1987, he was awarded the Davisson-Germer Prize in Atomic or Surface Physics from the American Physical Society “For his contribution to the development of low-energy electron diffraction as a quantitative probe of the crystallography defect structure, and dynamics of surfaces.” 

Several UW–Madison colleagues recently reflected on their time with Barney.

Of Barney’s competitive academic research program, Emeritus Professor Franz Himpsel says,

“It is particularly notable that during Barney’s career, the big industrial research labs (Bell Labs, IBM, Xerox) dominated at the cutting edge of research in condensed matter and surface physics — Barney’s specialties. Compared to a university professor, their research staff members had vast resources available — not only financially but also via interactions with expert in-house colleagues. Despite the odds, Barney kept up with them by devising clever experiments and building most of his equipment together with his students.”

Current materials science and engineering professor and former student of Barney’s, Max Lagally, recalls, “What always scared me is when Barney started saying ‘I don’t know anything about this, but…’ and then proceeded to demonstrate that he knew all about it.”

Barney is seated on the left and Ray is to Barney's left, crouched down to pose for the photo
Barney Webb (left) and his former student Ray Phaneuf (Ph.D. ’85) in February 2020.

Emeritus Professor Louis Bruch noted that Barney’s competitive edge carried over to interests outside the lab. Bruch says, “He was a competitive gardener, for instance on the question of first ripe tomatoes and last ripe strawberries.” And Professor Pupa Gilbert recalls, “Barney had a terrific sense of humor, and was an intrepid cyclist for most of his life. As he aged, he said that uphill roads ‘got steeper and steeper,’ so he stopped biking on them.”

Professor Mark Eriksson says that Barney was a great mentor and role model, always understated about his own accomplishments, and always willing to offer advice when asked.

“This was certainly true throughout my time on the faculty since 1999, when Barney was supportive and encouraging from day one. But it was true for me far earlier than that. At 9am on February 28, 1987, I met with Professor Webb in his office. He had agreed to talk to my father and me about choosing an undergraduate college, since I was interested in physics. I was a 17-year-old high school junior from Madison LaFollette. Barney didn’t know either my father or me, and the 28th was a Saturday. None of that mattered, and he was happy to take the time to talk with us. When I joined the faculty years later, I of course remembered that conversation, and so did he.”

Professor Bob Joynt says, “I probably had lunch with Barney 4000 times over 30 years, the last time when he was 92 and still coming in pretty much every day. He was the same age as my father. However, he was not a mentor but a protector. He shielded me every day from everything that is boring in life – he was a person always interested in everything and approached it all with the most lively intellect.  I never remember a moment in his company that was not absorbing and fun.”

Tributes and stories from Barney’s students and colleagues have been compiled here.

Barney’s obituary with Cress Funeral Services can be found at https://www.cressfuneralservice.com/obituary/Maurice-Webb.

Welcome, Professor Ke Fang!

By Madeleine O’Keefe, WIPAC

When you think of scientific meccas throughout the world, Madison, Wisconsin might not be the first place that comes to mind. But for astroparticle physicist Ke Fang, Madison is the place to be. That’s because it’s home to the Wisconsin IceCube Particle Astrophysics Center (WIPAC): the “leader of particle astrophysics in the world,” according to Fang. “Throughout the years, there have been all kinds of meetings and workshops that drive people in this field to Madison because it’s the center for particle astrophysics,” she says.

Ke Fang

Originally from Huangshan, China, Fang earned a B.S. in physics from the University of Science and Technology of China. Afterward, Fang moved to the United States for graduate school and earned her PhD in astrophysics from the University of Chicago in 2015. Following that, she went to the University of Maryland and the Goddard Space Flight Center for a Joint Space-Science Institute fellowship. Most recently, Fang was a NASA Einstein Fellow at Stanford University in California.

Now, Fang has joined WIPAC and the UW–Madison Physics Department as an assistant professor. To welcome Fang and learn more about her, we met up on—where else?—Zoom for an interview.

 Can you summarize your research? 

I use both experiments and theory to understand extreme activities of our universe. We receive multiple types of messengers from the universe—all the way from optical light to gamma rays, cosmic rays, neutrinos, and gravitational waves. These messengers can be emitted by a common source, such as a binary neutron star merger. Specifically, I use theoretical models to understand how these astrophysical events produce different messengers, whether theoretical models explain the data, and how the data compare with theoretical models. I also use the HAWC Observatory, the IceCube Neutrino Observatory, and the Fermi Large Area Telescope (Fermi-LAT) to observe or to find sources directly. For example, I jointly analyze the Fermi-LAT and HAWC data to observe gamma-ray sources from 0.1 GeV to 100 TeV—across six orders of magnitude. Studies using multiple messengers and wavelengths are rewarding because they help us get a full picture of what these astrophysical sources look like.

How did you get into your field of research?

When I started graduate school, high-energy astrophysics was rather new; it’s a field that has quickly grown in the past decade or so. High-energy astrophysics traditionally refers to astrophysics with X-ray observations, because X-rays are higher in energy compared to the optical band that astronomers traditionally use. But in the last few years, high-energy astrophysics has had another burst of delving into even higher energies. When we move up in energy, by millions or billions, we see many new sources that were previously not observable in the X-ray band, or different aspects of sources that were previously seen at lower energies. And there are so many unknowns in this field; we can see surprising things at the highest energies, and many of those observations are discoveries. I think that’s really intriguing.

 What attracted you to UW–Madison and WIPAC? 

I think it’s pretty fair to say that WIPAC—with IceCube, CTA, HAWC, Fermi-LAT, ARA, and IceCube-Gen2—is now the leader of particle astrophysics in the world. I think there’s a close match between my expertise and what is currently being done at WIPAC, and I’m excited about joining the department and joining these explorations of higher and higher energy neutrinos and gamma rays.

What’s one thing you hope students who take a class with you will come away with?

The content you learn from a class is limited, but the contexts where you could apply the knowledge are unlimited.

 What is your favorite particle?

Neutrino. If I have to pick one, neutrino is the one that I have in my heart.

What hobbies/other interests do you have?

 Cooking! I like to explore different things. I come from China, so Chinese cuisine is what I started from when I just moved to the United States. But after all these years, I’m getting more exposed to different types of cuisines and starting to explore more, like with Thai and Italian. When I go to nice restaurants, I try to remember the name of the dish and find the recipe online.

 

 

Welcome, Professor Lu Lu!

Lu Lu

New UW–Madison assistant professor of physics Lu Lu’s research program combines the past with the future. Her research looks for sources of ultrahigh energy particles, which is done by analyzing data that has already been collected. As she says, “Maybe data is already talking to us, we just haven’t looked.” But she is also working toward improving future data collection, which will require more technologically-advanced detectors. “My teachers, my great masters, have taught me that the current young generation has the responsibility to look into new techniques to go to the future for younger generations to proceed forward,” she says about her work in sensor R&D.

On January 1, Professor Lu joined the Department of Physics and IceCube. Most recently, she was a postdoctoral fellow at the International Center for Hadron Astrophysics at Chiba University in Japan. To welcome her, we sat down for a (virtual) interview.

What are your research interests?

My prime interest is astroparticle physics, and my ultimate goal is to find the sources of the highest energy particles in the universe. These particles carry energy of about 1020 electronvolts. This is higher energy than what we have from the Large Hadron Collider and human technologies. The real attractiveness here is we don’t know how nature accelerates these particles. And once we identify the sources, we can test new theories beyond the Standard Model using sources crated by nature.

What are one or two main projects you focus your research on? 

I’m involved in two experiments. One is IceCube, the other is Pierre Auger Observatory. I was doing cosmic ray analysis, but cosmic rays are usually charged particles and they are deflected in the magnetic field of the galaxy; they would not travel in a straight line. IceCube studies neutrinos which are neutral particles, they travel directly from the source. Pierre Auger detects ultrahigh energy photons, which are also neutral particles. One thing I want to do immediately after I join Madison is to combine these two experiments to do a joint analysis. We have photon candidates but we haven’t really tried to connect them in the multimessenger regime. By combining Pierre Auger photons with IceCube neutrinos, we could possibly find a transient source, a source that doesn’t constantly emit ultrahigh energy photons or neutrinos but all of a sudden there’s a flare. This type of analysis has never been done, but we have data on disks.

The second thing I’m interested in is using new sensor technologies. In IceCube, we have Gen2 being planned right now. Instead of using a single photon sensor, we’d use a more sensitive design and R&D. UW–Madison is taking the lead of designing this future detector. There’s also radio technology. So, to detect the highest energy neutrinos we need to build a large instrument volume. With optical array, it is really hard to scale up because one has to drill holes inside the South Pole, which is really expensive. But radio technology doesn’t have to go so deep, so they can bury their detectors on the surface areas, and the radiowaves can transmit further away than the optical photons in ice. For optical you have to make the detectors very dense, but for radio you can make the antennas further apart, so that means you can have a larger area and detect more events easily. I think radio is the way to go for the future.

You said you have a lot of data collected already and just need to analyze it. How do you analyze the data from these detectors?

We would have to search for photon candidates from the data from Auger, and identify where it comes from and what the time this event happened. Correspondingly, do we see neutrinos from IceCube coming from the same direction and at the same time? Because you can never be sure it’s a photon. It could be a proton. We then want to build a statistical framework to combine different multimessengers together in real time.

What does it mean if you find a photon in coincidence with a neutrino? 

Cosmic rays were first detected more than 100 years ago, and there’s a rich history of studying where they come from. The mystery of origins still remains today because our poor knowledge on the galactic/extragalactic magnetic fields and mass composition of cosmic rays. In my opinion, the most probable way to solve this puzzle is to use neutral particles. If we can identify ultrahigh energy photons in coincidence with neutrinos, that is a smoking gun that we are actually looking at a source and we can finally pin down where in the universe is accelerating high energy particles. And therefore, we can study particle physics maybe beyond Standard Model. It’s just like a lab created by the universe to test particle physics.

What is your favorite element and/or elementary particle? 

My favorite elementary particle is the electron anti-neutrino. I like muons, too. My favorite element is hydrogen.

What hobbies and interests do you have?

I’m afraid I’ll disappoint you because my hobby is related to my research: Augmented reality. When I heard about something called Microsoft Hololens, I thought, I could make IceCube a hologram. I bought these special glasses, and then made a program on it and used it for some outreach events. But the glasses are very expensive, so people said, “Okay we can’t buy hologram glasses.” So I moved it to mobile phones so that everyone could look at it for fun. It’s called IceCubeAR (note: download it for iPhones or Android phones). I made it with a group of friends in Tokyo.

 

 

Scientists Say Farewell to Daya Bay Site

The Daya Bay Reactor Neutrino Experiment collaboration – which made a precise measurement of an important neutrino property eight years ago, setting the stage for a new round of experiments and discoveries about these hard-to-study particles – has finished taking data. Though the experiment is formally shutting down, the collaboration will continue to analyze its complete dataset to improve upon the precision of findings based on earlier measurements.

The detectors for the Daya Bay experiment were built at UW–Madison by the Physical Sciences Laboratory, and detailed in a 2012 news release.

Says PSL’s Jeff Cherwinka, U.S. chief project engineer for Daya Bay:

The University of Wisconsin Physics Department and the Physical Sciences Lab were very involved in the design, fabrication and installation of the anti-neutrino detectors for the Daya Bay Experiment.  It was a great opportunity for faculty, staff, and students to participate in an important scientific measurement, while learning about another country and culture.  There were many trips and man years of effort in China by UW physicists, engineers and technicians to construct the experiment and many more for operations and data taking.  This international collaboration took a lot of effort, and in the end produced great results.

The chief experimentalist at UW–Madison was Karsten Heeger who has since left for Yale. At present, Prof. Baha Balantekin is the only one remaining at UW–Madison in the Daya Bay Collaboration.

A completion ceremony will be held Friday, December 11from 7:30-8:3opm CST. Video stream options and the full story can be found at Berkeley Lab’s website.