UW–Madison named member of new $25 million Midwest quantum science institute

cartoon showing a quantum hardware network

As joint members of a Midwest quantum science collaboration, the University of Wisconsin–Madison, the University of Illinois at Urbana–Champaign and the University of Chicago have been named partners in a National Science Foundation Quantum Leap Challenge Institute, NSF announced Tuesday.

The five-year, $25 million NSF Quantum Leap Challenge Institute for Hybrid Quantum Architectures and Networks (HQAN) was one of three in this first round of NSF Quantum Leap funding and helps establish the region as a major hub of quantum science. HQAN’s principal investigator, Brian DeMarco, is a professor of physics at UIUC. UW–Madison professor of physics Mark Saffman and University of Chicago engineering professor Hannes Bernien are co-principal investigators.

“HQAN is very much a regional institute that will allow us to accelerate in directions in which we’ve already been headed and to start new collaborative projects between departments at UW–Madison as well as between us, the University of Illinois, and the University of Chicago.” says Saffman, who is also director of the Wisconsin Quantum Institute. “These flagship institutes are being established as part of the National Quantum Initiative Act that was funded by Congress, and it is a recognition of the strength of quantum information research at UW–Madison that we are among the first.”

Read the full story at https://news.wisc.edu/uw-madison-named-member-of-new-25-million-midwest-quantum-science-institute/

cartoon showing a quantum hardware network
In a hybrid quantum network, hardware for storing and processing quantum information is linked together. This design could be beneficial for applications that rely on distributed quantum computing resources. | Credit: E. Edwards, IQUIST

Chicago Quantum Exchange, including UW–Madison, welcomes seven new partners in tech, computing and finance, to advance research and training

people in blue clean suits in a computer / electronics room

The Chicago Quantum Exchange, a growing intellectual hub for the research and development of quantum technology, has added to its community seven new corporate partners in computing, technology and finance that are working to bring about and primed to take advantage of the coming quantum revolution.

These new industry partners are Intel, JPMorgan Chase, Microsoft, Quantum Design, Qubitekk, Rigetti Computing, and Zurich Instruments.

The Chicago Quantum Exchange and its corporate partners advance the science and engineering necessary to build and scale quantum technologies and develop practical applications. The results of their work – precision data from quantum sensors, advanced quantum computers and their algorithms, and securely transmitted information – will transform today’s leading industries. The addition of these partners brings a total of 13 companies into the Chicago Quantum Exchange to work with scientists and engineers at universities and the national laboratories in the region.

“These new corporate partners join a robust collaboration of private and public universities, national laboratories, companies, and non-profit organizations. Together, their efforts — with federal and state support —will enhance the nation’s leading center for quantum information and engineering here in Chicago,” said University of Chicago Provost Ka Yee C. Lee.

Based at the University of Chicago’s Pritzker School of Molecular Engineering, the Chicago Quantum Exchange is anchored by the University of Chicago, the U.S. Department of Energy’s Argonne National Laboratory and Fermi National Accelerator Laboratory (both operated for DOE by the University of Chicago), and the University of Illinois at Urbana-Champaign, and includes the University of Wisconsin-Madison and Northwestern University.

“Developing a new technology at nature’s smallest scales requires strong partnerships with complementary expertise and significant resources. The Chicago Quantum Exchange enables us to engage leading experts, facilities and industries from around the world to advance quantum science and engineering,” said David Awschalom, the Liew Family Professor in Molecular Engineering at the University of Chicago, senior scientist at Argonne, and director of the Chicago Quantum Exchange. “Our collaborations with these companies will be crucial to speed discovery, develop quantum applications and prepare a skilled quantum workforce.”

Chicago Quantum Exchange member institutions engage with corporate partners in collaborative research efforts, joint workshops to develop new research directions, and opportunities to train future quantum engineers. The CQE has existing partnerships with Boeing, IBM, Applied Materials, Inc., Cold Quanta, HRL Laboratories, LLC, and Quantum Opus, LLC.

people in blue clean suits in a computer / electronics room
Scientists in Microsoft Quantum Lab Delft conducting research in pursuit of a topologically protected qubit. Microsoft is one of seven new computing, tech and finance companies to join the Chicago Quantum Exchange | Microsoft

The CQE’s newest corporate partners include a broader set of companies ranging in interest and expertise from quantum communication hardware to quantum computing systems and controls to finance and cryptography applications.

They include:

  • Intel is advancing a systems-level approach to quantum research that demonstrates quantum practicality and a path to commercially viable quantum computing systems. Its research efforts – in partnership with QuTech, the quantum institute of TU Delft and TNO—include technology advancements in silicon spin qubits, control and interconnect systems for large-scale quantum systems, and quantum algorithms.
  • JPMorgan Chase is a leader in the field of quantum algorithms and applications for financial use cases, such as portfolio optimization, option pricing and reinforcement learning, as well as general foundational algorithms with cross-domain applicability, such as quantum search. The firm has made a significant investment in quantum computing, collaborating with multiple quantum providers and forums. Its research team is also actively working in the area of post-quantum cryptography.
  • Microsoft has driven advances in scalable quantum technology for nearly two decades. Their global team of physicists, computer and materials scientists, engineers, developers, and enthusiasts are collaborating with a broad community to advance a full-stack quantum computing system, develop practical solutions, enable a quantum community, and accelerate quantum workforce development.
  • Quantum Design manufactures automated characterization systems that allow research and exploration of new materials & devices. With the partnership, Quantum Design will support research and advanced teaching at the CQE, launching a new student laboratory for quantum measurements and the study of quantum materials.
  • Qubitekk develops and manufactures a variety of key components for quantum networks. Qubitekk provides entangled photon sources in its support for researchers across the CQE working on the Argonne quantum loop.
  • Rigetti Computing builds and delivers integrated quantum systems and offers a distinctive hybrid cloud computing access model for practical near-term applications. The company owns and operates Fab-1, the world’s first dedicated quantum integrated circuit foundry.
  • Zurich Instruments develops advanced instrumentation including quantum control systems that enable reliable control and measurement of superconducting qubits and silicon spin qubits. The company will collaborate with the CQE on student opportunities and research.

Many of the new industry partners already have ongoing or recent engagements with CQE and its member institutions. In recent collaborative research, spectrally entangled photons from a Qubitekk entangled photon source were transported and successfully detected after traveling through one section of the Argonne quantum loop.

Another example of these relationships is the work that University of Chicago computer scientist Fred Chong and his students have done with both Intel and Rigetti Computing on software and hardware solutions. With Intel’s support, Chong’s team invented a range of software techniques to more efficiently execute quantum programs on a coming crop of quantum hardware. For example, they developed methods that take advantage of the hierarchical structure of important quantum circuits that are critical to the future of reliable quantum computation.

Jim Clarke, director of quantum hardware at Intel, looks forward to further collaborations with Chicago Quantum Exchange members.

“Intel remains committed to solving intractable challenges that lie on the path of achieving quantum practicality,” said Clarke. “We’re focusing our research on new qubit technologies and addressing key bottlenecks in their control and connectivity as quantum systems get larger. Our collaborations with members of the Chicago Quantum Exchange will help us harness our collective areas of expertise to contribute to meaningful advances in these areas.”

The Chicago Quantum Exchange’s partnership with JPMorgan Chase will enable the use of quantum computing algorithms and software for secure transactions and high-speed trading.

“We are excited about the transformative impact that quantum computing can have on our industry,” said Marco Pistoia, managing director, head of applied research and engineering at ‎JPMorgan Chase. “Collaborating with the Chicago Quantum Exchange will help us to be among the first to develop cutting-edge quantum algorithms for financial use cases, and experiment with the power of quantum computers on relevant problems, such as portfolio optimization and option pricing.”

Applying quantum science and technology discoveries to areas such as finance, computing and healthcare requires a robust workforce of scientists and engineers. The Chicago Quantum Exchange integrates universities, national laboratories and leading companies to train the next generation of scientists and engineers and to equip those already in the workforce to transition to quantum careers.

“Microsoft is excited to partner with the Chicago Quantum Exchange to accelerate the advancement of quantum computing,” said Chetan Nayak, general manager of Microsoft Quantum Hardware. “It is through these academic and industry partnerships that we’ll be able to scale innovation and develop a workforce ready to harness the incredible impact of this technology.”

Mark Eriksson earns WARF named professorship

Mark Eriksson gives a tour of his research lab

Mark Eriksson has been named the John Bardeen Professor of Physics, through the Wisconsin Alumni Research Foundation (WARF) named professorship program.

The WARF named professorship program provides recognition for distinguished research contributions of the UW–Madison faculty. The awards are intended to honor those faculty who have made major contributions to the advancement of knowledge, primarily through their research endeavors, but also as a result of their teaching and service activities.

profile photo of Mark Eriksson
Mark Eriksson

Eriksson joined the UW–Madison physics faculty in 1999. His research has focused on quantum computing, semiconductor quantum dots, and nanoscience. He currently leads a multi-university team focused on the development of spin qubits in gate-defined silicon quantum dots. A goal of this work is to enable quantum computers, which manipulate information coherently, to be built using many of the materials and fabrication methods that are the foundation of modern, classical integrated circuits.

“If you look back at my work here over the last, it’ll be 21 years in August, it’s almost all been collaborative, and I’ve really enjoyed the people I’ve worked with,” Eriksson says. “Going into the future, those collaborations are going to continue, of course. We have a real opportunity to see what semiconductor fabrication technology can do for qubits and quantum computing — how can we make really high-quality, silicon qubits in a way that leverages and makes use of the same technology that people use to make classical computer chips?”

a group of 7 people
Members of the Eriksson Group at a conference in Spain in Fall 2019.

Eriksson’s past and present UW–Madison collaborators include, in addition to many students and postdocs, physics professors Victor Brar, Sue Coppersmith, Bob Joynt, Shimon Kolkowitz, and Robert McDermott; physics senior scientist Mark Friesen; and materials science and engineering professor Max Lagally and scientist Don Savage.

The WARF program asks recipients to choose the name of their professorship. Eriksson, who graduated with a B.S. in physics and mathematics from UW–Madison in 1992, chose fellow alum John Bardeen — a scientist who has the unique honor of being the only person to receive the Nobel Prize in Physics twice.

“Bardeen was one of the inventors of the transistor, and I work with semiconductor qubits which are very similar to transistors in many ways,” Eriksson explains. “It seemed appropriate to choose him, because he was an alum of the university, he’s a Madison native, and he was co-inventor of the transistor.”

Eriksson was one of 11 UW­–Madison faculty awarded WARF named professorships this year. The honor comes with $100,000 in research funding over five years.

“Prof. Mark Eriksson is a world-leading expert in the development of quantum information systems using solid-state quantum dot qubits,” says Sridhara Dasu, physics department chair. “Recognition of his successes in research and his contribution to the training of researchers in this increasingly promising area of quantum information, through the awarding of WARF professorship, is much deserved.”

M.S. in Physics-Quantum Computing

The Department of Physics is adding a new degree program focused on the growing field of quantum computing. The M.S. in Physics-Quantum Computing is a new Master’s program that will admit its first class in the Fall 2019 semester. The program will provide students with a thorough grounding in the new discipline of quantum information and quantum computing.

More Info