Events

R. G. Herb Condensed Matter Seminars

<< Fall 2021 Spring 2022 Summer 2022 >>
Subscribe your calendar or receive email announcements of events

Events During the Week of March 6th through March 13th, 2022

Monday, March 7th, 2022

No events scheduled

Tuesday, March 8th, 2022

Simulating quantum many-body phenomena with superconducting qubits
Time: 10:00 am - 11:00 am
Place: 5310 Chamberlin Hall
Speaker: Roman Kuzmin, University of Maryland
Abstract: Superconducting circuits are ubiquitous in quantum simulations, computing, and metrology. In this talk, I will show a superconducting circuit platform extended to the extreme, in which the circuits actually become insulating. Remarkably, such nominally insulating circuits are a valuable resource. They create a tunable high-impedance environment and facilitate exceptionally strong interactions between photons and superconducting qubits. This opens up new directions for analog quantum simulations of interacting many-body problems, with examples ranging from quantum phase transitions to many-body localization. In particular, I will start with the demonstration of a dissipative quantum phase transition in a Josephson junction facing an Ohmic environment. Despite many experimental attempts, the existence of such a transition remains controversial. Using the high-impedance circuit environment, I will present evidence of the transition with a conceptually new approach, which relies on monitoring environmental degrees of freedom. A similar approach applies to analog quantum simulations of other strongly interacting models, which I will illustrate on two quantum impurity models relevant to the physics of Luttinger liquids and the Kondo effect. In the latter case, interactions induced by a quantum impurity in a finite size system allow us to observe the phenomenon of many-body localization. Finally, I will argue that the high-impedance circuit platform can contribute to the development of various areas of quantum science and technology.
Host: Mark Saffman
Add this event to your calendar

Wednesday, March 9th, 2022

No events scheduled

Thursday, March 10th, 2022

Skyrmion pairing: a topological route to superconductivity
Time: 10:00 am - 11:00 am
Place: 5310 Chamberlin Hall
Speaker: Shubhayu Chatterjee, University of California Berkeley
Abstract: Atomically thin Van der Waals materials have emerged as a highly versatile platform to advance our understanding of quantum matter driven by strong electron correlations. Recent experimental breakthroughs in stabilizing few-layered graphene structures with a “magic” relative twist between layers has led to the discovery of a wide variety of correlated states ranging from magnetism to superconductivity. Despite compelling experimental evidence for unconventional superconductivity, the glue which binds electrons into Cooper pairs remains a mystery. In this talk I will propose a novel resolution: the Cooper pairs are composed of electrically charged topological spin textures called “skyrmions,” rather than electrons. First proposed by Tony Skyrme to model baryons in particle physics, I will explain how their topological properties can give rise to superconductivity in an electronic model with purely repulsive interactions, and without recourse to phonons which are conventionally responsible for pairing.
Host: Robert McDermott
Add this event to your calendar

Friday, March 11th, 2022

No events scheduled