Events

Atomic Physics Seminars

<< Fall 2022 Spring 2023 Summer 2023 >>
Subscribe your calendar or receive email announcements of events

Events During the Week of February 5th through February 12th, 2023

Monday, February 6th, 2023

Beyond quantum circuits with trapped-ion qubits
Time: 11:00 am - 12:00 pm
Place: 5310 Chamberlin Hall
Speaker: Or Katz, Duke University
Abstract: Trapped ions are a leading quantum technology for quantum computation and simulation, with the capability to solve computationally hard problems and deepen our understanding of complex quantum systems. The quantum circuit model is the central paradigm for quantum computation, enabling the realization of various quantum algorithms by application of multiple one- and two-qubit entangling operations. However, the typical number of entangling operations required by this model increases exponentially with the number of qubits, making it difficult to apply to many problems.
In my presentation, I will discuss new methods for realizing quantum gates and simulations that go beyond the quantum circuit model. I will first describe a single-step protocol for generating native, N-body interactions between trapped-ion spins, using spin-dependent squeezing. Next, I will present a preparation of novel phases of matter using simultaneous and reconfigurable spin-spin interactions. Lastly, I will explore new avenues to harness the long-lived phonon modes in trapped-ion crystals for simulating complex bosonic and spin-boson models that are difficult to solve using classical methods. The presented techniques could push the performance of trapped-ion systems to solve problems that are currently beyond their reach.
Add this event to your calendar

Tuesday, February 7th, 2023

No events scheduled

Wednesday, February 8th, 2023

Quantum many-body physics with ultracold molecules
Time: 11:00 am - 12:00 am
Place: 5310 Chamberlin Hall
Speaker: Zoe Yan , Princeton University
Abstract: A central challenge of modern physics is understanding the behavior of strongly correlated matter. Current knowledge of such systems is limited on multiple fronts: experimentally, these materials are often difficult to fabricate in laboratory settings, and numerical simulations become intractable as the number of particles approaches meaningful values. In the spirit of Feynman, physicists can model diverse phenomena, from high-temperature superconductivity to quantum spin liquids, using analog quantum simulation. My research explores emergent quantum phenomena in pristine systems made of atoms, molecules, and electromagnetic fields. In particular, ultracold molecules are a promising platform due to their tunable long-range interactions and large set of internal states. However, this nascent platform requires new experimental techniques to create, control, and probe molecular systems.
I will report on efforts to create ultracold polar molecules, coherently manipulate their internal levels, and demonstrate second-scale coherence times in a molecular ensemble. To leverage the long-range, anisotropic dipolar interactions, we engineer dipolar collisions in a bulk ensemble using the technique of microwave dressing. Upon loading polar molecules into a 2D optical lattice, we study dynamics and thermalization in a variety of spin models relevant to quantum magnetism. Toward that end, we develop a novel readout modality – quantum gas microscopy – to perform site-resolved fluorescence imaging, enabling the measurement of quantum correlations and entanglement. The techniques presented here establish ultracold molecules as a compelling platform for quantum science and technology.
Host: Thad Walker
Add this event to your calendar

Thursday, February 9th, 2023

No events scheduled

Friday, February 10th, 2023

No events scheduled