Jimena González wins 2023 OSG David Swanson Award

Early in her thesis research, Jimena González was waiting. A lot.

To better understand the nature of dark energy, she uses machine learning to search Dark Energy Survey cosmology data for evidence of strong gravitational lensing — where a heavy foreground galaxy bends the light of another galaxy, producing multiple images of it that can get so distorted that they appear as long arcs of light around the large galaxy in telescope images. She also focuses on finding very rare cases of strong gravitational lensing in which two galaxies are lensed by the same foreground galaxy, systems known as double-source-plane lenses.

First, she had to create simulations of the galaxy systems. Next, she used those simulations to train the machine learning model to identify the systems in the heaps and heaps of DES data. Lastly, she would apply the trained model to the real DES data. All told, she expected to find hundreds of “simple” strong gravitational lenses and only a few double-source-plane lenses out of 230 million images.

“But, for example, when I did the search the first time, I mostly only got spiral galaxies, so then I had to include spiral galaxies in my training,” says González, a physics graduate student in Keith Bechtol’s group.

The initial steps took around two weeks (hence the waiting) before she could even know what needed to be changed to better train the model. Once she had the model trained and would be ready to apply it to the entire dataset, she estimated it would take five to six years just to find the images of interest — and then she would finally be able to study the systems found.

a woman stands in front of a screen with a research slide on the screen, she faces the audience and is gesturing with her hands.
Jimena González presents an award lecture at the 2023 Throughput Computing Conference. (provided by Jimena González)

Then, the email from the Open Science Grid (OSG) Consortium came. The OSG Consortium operates a fabric of distributed High Throughput Computing (dHTC) services, allowing users to take advantage of massive amounts of computing power. Researchers can apply to the OSG User School, an annual workshop for scientists who want to learn and use dHTC methods.

“[dHTC] is parallelizing things. It’s like if you had 500 exams to grade, you can distribute them among different people and it would take less time,” González says. “It sounded perfect for me.”

González applied and was accepted into the 2021 program, which was run virtually that year. At the OSG User School, she learned methods that would allow her to take advantage of dHTC and apply them to her work. Her multi-year processing time was cut down to mere days.

“Because it was so fast, there were many new things that I could implement in my research,” González says. “A lot of the methodology I implemented would not have been possible without OSG.”

This summer, González was selected as one of two recipients of the OSG David Swanson Award.

David Swanson was a longtime champion of and contributor to OSG, who passed away in 2016. In his memory, the award is bestowed annually upon one or more former students of the OSG User School who have subsequently achieved significant dHTC-enabled research outcomes.

She accepted the award at the Throughput Computing 2023 conference, where she presented her research and discussed how she used her training from the OSG User School to successfully comb through the DES data and find the systems of interest.

“When I got the award, I didn’t know anything about [Swanson],” González says. “But once I attended this event, I heard so many people talking about him, and I understood why it was created. It is such an honor to receive this award in his name.”

Welcome, Professor Moritz Münchmeyer!

Profile photo of Moritz Münchmeyer
Moritz Münchmeyer

On January 1, assistant professor Moritz Münchmeyer joined the UW–Madison physics department. He specializes in theoretical and computational cosmology. His research combines theoretical investigation, the analysis of data from different observatories, and the development of machine learning techniques to probe fundamental physics with cosmological data. He joins us from the Perimeter Institute for Theoretical Physics in Waterloo, where he was a Senior Postdoctoral Fellow. To welcome Münchmeyer to the department and to learn more about him and his research, we sat down for a (virtual) interview.

What are your research interests? 

I work at the intersection of theory and observation in cosmology. On the one hand we have the mathematical theories of how the universe works, and then we have observations made by telescopes and detectors. The universe, of course, is incredibly complicated. There are many forces and particles and radiation that all interact with each other. And that makes it often hard to go from observational data to the theory that you’re interested in. We want to know, for example, what were the laws of physics in the very early universe? Or how does the universe evolve? And so, I develop new methods to use the data to probe the theories.

One thing that I’m very excited about now is using techniques from data science and machine learning for cosmology. As everybody knows, there’s a machine learning revolution going on which is having an impact on many fields, including cosmology. But the techniques in machine learning are often developed to do things like object recognition in images. They do not necessarily work well for the kind of data that we have, which has very different properties and is described by physical theories. So, I’m trying to adapt these machine learning techniques, or find new ones, that are specifically suited for the problems of cosmology.

I also work on new theoretical ideas to use observational data. There will be a huge influx of new cosmological data in the next decade: many experiments are being built and they are often much better than previous experiments. We’ll get amazing new data of the universe and I’m thinking about how to use this data to learn more about fundamental physics, for example by combining different data sources in new ways that have not been explored before.

What is the source of the data you use in your research?

 When I started in cosmology, I became a member of the Planck satellite collaboration, which was a Cosmic Microwave Background (CMB) experiment. Many of the best measurements of cosmological parameters, such as the age of the universe, come from Planck. Of course, now we are building even better CMB experiments, such as the Simons Observatory which I am a member of. In about two years it will start to take precision measurements of the radiation from the early universe. I am also a member of the CHIME experiment, which is detecting Fast Radio Bursts, a new exciting source of data for cosmology and astrophysics. In Madison I am looking to also become involved with Vera Rubin Observatory, one the major upcoming galaxy surveys, which can be combined with CMB experiments. Prof. Keith Bechtol in the physics department is a leading contributor to this experiment. As a theorist, I am not involved much in the data taking process, but once the data is taken, my group will work on its analysis with the methods we have developed.

Once you settle into your new role here, what are the first research projects your group will start on? 

The broad subject we’ll work on is to learn about the initial conditions of the universe from CMB and galaxy data. We will develop new statistical tools and machine learning methods towards this goal. We will also think about new ideas to use cosmological data, such as the Fast Radio Bursts I mentioned before.

What hobbies and interests do you have?  

I have a family with two young children, so I like to go on adventures with them. I also play piano, especially to get my mind off physics. My current favorite sport is Brazilian Jiu-Jitsu. I’ve also always been interested in entrepreneurship. A few years ago, I co-founded a small company, Wolution, which uses machine learning — not in cosmology, but for image analyses in bio sciences, agriculture, and other fields.

What is your favorite element and/or elementary particle? 

My favorite elementary particle is the photon, because it’s extremely versatile: the entire electromagnetic spectrum, like radio waves and x-rays and of course visible light. All the experiments I mentioned above fundamentally detect photons.