Speaker: Ashley Taylor, UW Department of Mechanical Engineering
Abstract: Energy harvesting is a very old idea arguably going back to the invention of the windmill, sail, and waterwheel. More recently efforts have been focused on ways to convert environmental energy into electrical power. Many types of energy harvesters exist covering a very broad range of applications from large scale power generators to portable power sources for mobile devices and sensors. The harvesting of environmental mechanical energy is particularly promising for portable applications by using such high-power sources as human locomotion, but currently its use is substantially limited by low power output of energy converters. Existing methods of mechanical-to-electrical energy conversion such as electromagnetic, piezoelectric, or electrostatic are not well suited for effective direct coupling to the majority of high-power environmental mechanical energy sources suitable for portable applications, thus their energy output remains in the microwatt to hundreds of milliwatt range. However with the rapid growth of mobile devices the demand for power sources producing watts or tens of watts has acutely increased. To bridge this gap we have developed a radically new mechanical-to-electrical energy conversion method which is based on reverse electrowetting aEuro" a novel microfluidic phenomenon. Energy generation is achieved through the interaction of arrays of moving microscopic liquid droplets with a novel multilayer thin film. We believe that this approach has a number of significant advantages over existing mechanical energy harvesting technologies.