Double the Higgs, Double the Mystery! The hunt for a new, heavy particle decaying to a pair of Higgs Bosons

This story, written by physics grad student Ganesh Parida, was originally published by the CMS collaboration

CMS scientists are on the hunt for a new, heavy particle that decays into a pair of Higgs bosons. Using the final state with two bottom quarks and two tau leptons, the search sets the most stringent limits to date in the mass range 1.4–4.5 TeV.

Ganesh Parida

The CMS experiment is searching for signs of new, heavy particles that could decay into pairs of Higgs bosons –  we call this an HH signature. These signatures are particularly exciting because they can give us clues about the stability of our universe and open a window to physics beyond our current understanding of fundamental particles and their interactions, the standard model.

In this search, we focus on a final state where one Higgs boson decays to two bottom quarks (H→bb) and the other decays to two tau leptons (H→ττ). This final state offers a promising balance: it has a relatively large probability of occurring, while also allowing us to separate signal events from background processes. Performing such a search is far from straightforward. If a new heavy particle were produced at the LHC, it would impart a large momentum, a “boost”, to its daughter Higgs bosons. The boost causes the decay products of each Higgs boson to be collimated and overlap in the detector, making their reconstruction quite challenging.

 

a diagram shows two small 'g' with orange squiggly lines converging on a pink circle. A blue squiggly line emerges, then splits into two dashed lined that lead to H's, with both subsequently splitting to two beta or tau symbols for top and bottom quark and tau particles
Diagram showing a new physics process explored in this search. Two protons collide and produce a new heavy particle X, which then decays into two standard model Higgs bosons , which in turn give two bottom quarks and two tau leptons in the final state. | Credit: CMS Collaboration

To meet this challenge, CMS uses advanced reconstruction and machine-learning techniques. For the H→bb decay, the bottom quarks form collimated sprays of particles, called jets, which overlap to a large extent. To identify them, a graph neural network, called ParticleNet, is trained to recognize the pattern of the two bottom quark jets inside a single, large jet.

Reconstructing the H→ττ is a two-step process: first, we untangle and reconstruct the two really close taus, and then we use a convolutional neural network, called Boosted DeepTau to figure out the characteristics of these reconstructed taus and tell them apart from background jets. Because tau leptons also produce invisible neutrinos, we apply a likelihood-based method to obtain the four-momentum of the parent Higgs boson.

Once both Higgs bosons are reconstructed, we can combine them to measure the mass of the system. If a new heavy particle exists, it would appear as a peak, or “bump,” on top of the smoothly falling background distribution. This strategy is often referred to as a “bump hunt” – a classic tool in the search for new particles at colliders.

graph on left is observable (x-axis) vs number of events. it's a hand-drawn-ish cartoon with a clear signal bump in the middle. Right is Mass of the higgs vs events.
Left: The sketch illustrates how we perform a “bump hunt.” Background processes fall smoothly with increasing mass, while a new particle would create a visible peak on top of this distribution. Right: We reconstruct the mass of Higgs boson pairs from collision data and compare it to standard model background predictions (shown in color). The black points show the recorded data, while the dashed lines illustrate how new heavy particles could appear. The data follow the standard model expectation, and CMS does not observe a significant excess. | Source: CMS Collaboration

After analyzing data from the full LHC Run 2 (2016–2018), CMS did not observe any significant deviation from the standard model prediction. While this means that no new particle was discovered in this final state yet, the analysis sets the most stringent upper limits to date on the possible production of heavy particles decaying into Higgs boson pairs in the bbττ final state in the mass range of 1.4 TeV to 4.5 TeV.

“The results may not yet show evidence of new physics, but they are paving the way,” says Ganesh Parida, a PhD student at the University of Wisconsin–Madison, who carried out this analysis together with Camilla Galloni and Deborah Pinna, both scientists at the University of Wisconsin–Madison and members of CMS. “It has been both exciting and rewarding to learn, develop, and apply sophisticated techniques to probe these challenging boosted regimes.”

The biggest challenge here is the sheer number of events we can collect for these difficult “boosted” scenarios. That is why the ongoing Run 3 and the upcoming High-Luminosity runs of the LHC are so important – they will give us the biggest datasets ever for a potential discovery!

UW–Madison team awarded NSF grant to develop cameras for the world’s largest high-energy gamma-ray observatory

This story was adapted from the WashU and CTAO releases for the University of Wisconsin–Madison. A team of researchers and engineers from the University of Wisconsin–Madison and Washington University in St. Louis has been awarded a $3.9 million grant from the U.S. National Science Foundation to build and install gamma-ray cameras for the Cherenkov Telescope [...]

Read the full article at: https://wipac.wisc.edu/uw-madison-team-awarded-nsf-grant-to-develop-cameras-for-the-worlds-largest-high-energy-gamma-ray-observatory/

Hilldale Undergraduate Award Winners in Physics

Four physics majors have earned 2025 Hilldale Fellowships. They are:

  • Ruben Aguiló Schuurs, Computer Sciences and Physics major, working with Mark Saffman
  • Zijian Hao, Astronomy – Physics and Physics major, working with Paul Terry (Physics)
  • Nathaniel Tanglin, Astronomy – Physics and Physics major, working with Elena D’Onghia (Astronomy)
  • Michael Zhao, AMEP and Physics major, working with Saverio Spagnolie (Mathematics)

Additionally, Qing Huang, a Data Science, Information Science, and Statistics major working with Gary Shiu (Physics) also earned an award.

The Hilldale Undergraduate/Faculty Research Fellowship provides research training and support to undergraduates. Students have the opportunity to undertake their own independent research project under the mentorship of UW–Madison faculty or research/instructional academic staff. Please Note: Graduate students are ineligible to serve as the project advisor. Approximately 97 – 100 Hilldale awards are available each year.

The student researcher receives a $4,000 stipend (purpose unrestricted) and the faculty/staff research advisor receives $1,000 to help offset research costs (e.g., supplies, books for the research, student travel related to the project). The project advisor can decline the $1,000 if it is not needed to support the student’s research. Declined project advisor funds are pooled to offer additional Hilldale Fellowships.

Roman Kuzmin earns NSF CAREER Award

profile photo of Roman Kuzmin
Roman Kuzmin

Congrats to Roman Kuzmin, the Dunson Cheng Assistant Professor of Physics, for being selected for an NSF CAREER award. The 5-year award will support Kuzmin and his group’s research on understanding fluxonium qubits and how their properties can be used to simulate the collective behavior of quantum materials.

Superconducting qubits are one promising technology for quantum computing, and the best-studied type is the transmon. Kuzmin’s work will investigate the fluxonium type, which he expects to be an improvement over transmons because they have demonstrated higher coherence, and their ground and first excited state are better separated from other energy levels.

“These properties make fluxonium behave similar to a magnetic moment, or like a magnetic atom, which we can fabricate in the lab and tune its properties,” Kuzmin says. “Things become interesting when interactions are very strong, and you need to involve many-body physics to describe them. We plan to build circuits which recreate the behavior of these complicated systems so that we have better control and can study multiple collective phenomena that appear in materials with magnetic impurities.”

In the lab, this research will be explored by building circuits with fluxonium qubits, capacitors, and inductors, which are further combined into more complicated circuits. The circuits will be used to test theoretical predictions of such behaviors as quantum phase transitions, entanglement scaling, and localization.

In addition to an innovative research component, NSF proposals require that the research has broader societal impacts, such as developing a competitive STEM workforce or increasing public understanding of science. Kuzmin plans to expand his work in the department’s Wonders of Physics program. This past February, he helped build a wave machine (with Steve Narf) to visually demonstrate patterns of interference, and he performed in all eight shows. His group has also participated in TeachQuantum, a summer research program for Wisconsin high school teachers run through HQAN, the NSF-funded Quantum Leap Challenge Institute that UW–Madison is a part of.

“One of the goals of this proposal is to introduce more quantum physics to the annual Wonders of Physics show; another is to provide hands-on training for high school teachers in my lab,” Kuzmin says. “Together, these activities will increase K-12 students’ engagement with quantum science and technology.”

The Faculty Early Career Development (CAREER) Program is an NSF-wide activity that offers the Foundation’s most prestigious awards in support of early-career faculty who have the potential to serve as academic role models in research and education and to lead advances in the mission of their department or organization. Activities pursued by early-career faculty should build a firm foundation for a lifetime of leadership in integrating education and research.

Four professors earn promotions, including tenure for Ke Fang

Congratulations to Associate Professor Ke Fang on her promotion with tenure, to Professor Justin Vandenbroucke on his promotion to full professor, and to Profs. Dan Hooper and Britton Plourde who were both granted tenure!  

profile photo of Ke Fang
Ke Fang

Prof. Fang is an experimental particle astrophysicist and WIPAC investigator who studies the origins of subatomic particles and their fundamental nature by detecting messengers from throughout the universe. She has made major contributions to the analysis of data from the High Altitude Water Cherenkov (HAWC) Observatory, the IceCube Observatory and the NASA Fermi satellite. 

In 2021, Fang received the Shakti P. Duggal Award for Early Career Contributions in Cosmic Ray Physics. In 2023, she received the NSF CAREER award. In 2024, she was named a Sloan Fellow. Later that year, she was named the inaugural recipient of the Bernice Durand Faculty Fellowship, a departmental award named in honor of Durand, one of the first two women faculty members in the UW–Madison physics department. She also served as the US spokesperson for HAWC in 2023-2025. 

“Ke Fang is one of the most impactful astroparticle phenomenologists of her generation,” says physics department chair and professor Kevin Black. “Her work is highly original and broad with strong implications for the emerging area of multi-messenger astronomy and particle astrophysics.” 

profile photo of Justin Vandenbroucke
Justin Vandenbroucke

Prof. Vandenbroucke is also a WIPAC investigator and experimental particle astrophysicist. He joined the department in 2013. His main research focus is in multi-messenger astrophysics, including neutrino astronomy, gamma-ray astronomy, and cosmic rays. He is a member of the IceCube collaboration and the Cherenkov Telescope Array Observatory consortium and is an affiliate member of the Fermi LAT and VERITAS collaborations. 

Vandenbroucke was previously promoted to associate professor with tenure in 2019. He was named a Vilas Associate from 2023-2025, and was a co-recipient of UW2020 awards in 2018 and 2020. He also leads the Distributed Electronic Cosmic-Ray Observatory (DECO), a citizen science project that enables users around the world to detect cosmic rays and other energetic particles with their cell phones and tablets. 

“Justin Vandenbroucke is an outstanding experimentalist who, at the same time, develops creative and challenging data analysis projects that have led to scientific results published in highly cited papers,” Black says. “He does this in two different fields, gamma-ray and neutrino astrophysics, and is a leader in both.”

Profile photo of Dan Hooper
Dan Hooper

Prof. Hooper, PhD’03 was named the director of WIPAC and joined the physics faculty as a full professor in 2024. He is a theoretical particle astrophysicist whose research focuses on the interface between particle physics and cosmology. His work has spanned the areas of dark matter, high-energy neutrino astronomy, gamma-ray astronomy and cosmic-rays. He is the author of several books and co- hosts the physics podcast “Why This Universe?” breaking down some of some of the biggest ideas in physics into easily digestible chunks.

“Dan Hooper is a singular figure in his field, a stand-out leader in terms of scientific impact whose ideas cast a wide influence on the study of high energy theory, dark matter phenomenology, collider physics, astroparticle physics, and the direct experimental and observational search for dark matter,” Black says. 

profile photo of Britton Plourde
Britton Plourde

Prof. Plourde joined the department as a full professor in 2024 from Syracuse University. He is an experimental condensed matter physicist who studies superconducting quantum circuits. He is currently on a half-time leave at UW–Madison and works with Qolab, a quantum computing startup company based in Madison. Plourde was elected a Fellow of the American Physical Society in 2024 in the Division of Quantum Information, and in 2023 was elevated to Fellow of the Institute of Electrical and Electronics Engineers. 

“Britton Plourde is internationally recognized for his contributions in the field of low-temperature physics and superconducting quantum circuits,” Black says. “He has made significant contributions in the field of superconducting quantum computing and is best known in the community for his works on superconducting qubits, left-handed and quantum metamaterials, and, more recently, for studies of decoherence sources and suppression of errors in superconducting quantum circuits.”

Natasha Kassulke and Alisa King-Klemperer contributed to this story