Keith Bechtol selected to Department of Energy Early Career Research Program

profile photo of keith bechtol
Keith Bechtol

The Department of Energy’s (DOE) Office of Science announced the selection of 83 scientists — including University of Wisconsin–Madison physics professor Keith Bechtol — to the Early Career Research Program.

The funding will allow Bechtol and his group to first work on commissioning the Vera C. Rubin Observatory in preparation for the Legacy Survey of Space and Time (LSST), then they will transition to data collection and analysis for their cosmology research.

“We are anticipating that LSST will catalog more stars, more galaxies and more solar system objects during its first year of operations than all previous telescopes combined,” Bechtol says.

Rubin Observatory’s telescope will have an eight-meter diameter mirror and a ten square degree field of view. The 3.2-billion-pixel camera will collect an image every 30 seconds. All told, LSST will amass around 10 terabytes of data every night.

Bechtol has leadership roles for building and commissioning the observatory as well as with the Dark Energy Science Collaboration (DESC), the international science collaboration that will make high accuracy measurements of fundamental cosmological parameters using LSST data. At least seven other collaborations have formed around different science areas to analyze the data. Rubin Observatory is preparing to serve the LSST data to many thousands of scientists in the US, Chile, and at international partner institutions around the world.

“DESC will use LSST data to address several outstanding physics questions, such as: Why are the distances between galaxies growing at an accelerating rate? What is the fundamental nature of dark matter? What is the absolute mass scale of neutrinos? How did the universe begin and what were the initial conditions?” Bechtol says.

Bechtol will receive around $150,000 per year for five years to cover summer salary and research expenses. The research expenses will be used mostly to cover the analyses after the data collection starts. However, because there cannot be useful data without the initial commissioning and science validation steps — and because the Observatory is still a couple of years away from first light — the DOE award is also supporting Bechtol’s efforts during the commissioning phase to accelerate the realization of DESC science goals.

“For me, the most important thing about this award is that it will provide more opportunity for students and postdocs to directly contribute to this ambitious experiment. Turning on a new experiment of this scale and complexity doesn’t happen every day,” Bechtol says. “For my research group to be able to participate firsthand in the commissioning, seeing first light, and contributing to the first cosmology results is so valuable from a career development perspective. We are training the next generation of experiment builders.”

The DOE early career program is open to untenured, tenure-track professors at a U.S. academic institution (or a full-time employee at a DOE national laboratory) who received a PhD within the past 10 years. Research topics are required to fall within one of the DOE Office of Science’s eight major program offices, including high energy physics, the program through which Bechtol’s award was made.

 

Magellanic Stream arcing over Milky Way may be five times closer than previously thought

Our galaxy is not alone. Swirling around the Milky Way are several smaller, dwarf galaxies — the biggest of which are the Small and Large Magellanic Clouds, visible in the night sky of the Southern Hemisphere.

profile photo of Scott Lucchini
Scott Lucchini

During their dance around the Milky Way over billions of years, the Magellanic Clouds’ gravity has ripped from each of them an enormous arc of gas — the Magellanic Stream. The stream helps tell the history of how the Milky Way and its closest galaxies came to be and what their future looks like.

New astronomical models developed by scientists at the University of Wisconsin–Madison and the Space Telescope Science Institute recreate the birth of the Magellanic Stream over the last 3.5 billion years. Using the latest data on the structure of the gas, the researchers discovered that the stream may be five times closer to Earth than previously thought.

The findings suggest that the stream may collide with the Milky Way far sooner than expected, helping fuel new star formation in our galaxy.

“The Magellanic Stream origin has been a big mystery for the last 50 years. We proposed a new solution with our models,” says Scott Lucchini, a graduate student in physics in Elena D’Onghia’s group at UW–Madison and lead author of the paper. “The surprising part was that the models brought the stream much closer to the Milky Way.”

Lucchini, D’Onghia, and Space Telescope Science Institute scientist Andrew Fox published their findings in The Astrophysical Journal Letters on Nov. 8.

Read the full story

a starscape showing the milky way in the distance and a rendering of the gases surrounding the large magellenic cloud
The Large and Small Magellanic Clouds as they would appear if the gas around them was visible to the naked eye. | Credits: Scott Lucchini (simulation), Colin Legg (background)

CHIME telescope detects more than 500 mysterious fast radio bursts in its first year of operation

This post has been modified from the original post, published by MIT News

To catch sight of a fast radio burst is to be extremely lucky in where and when you point your radio dish. Fast radio bursts, or FRBs, are oddly bright flashes of light, registering in the radio band of the electromagnetic spectrum, that blaze for a few milliseconds before vanishing without a trace.

These brief and mysterious beacons have been spotted in various and distant parts of the universe, as well as in our own galaxy. Their origins are unknown, and their appearance is unpredictable. Since the first was discovered in 2007, radio astronomers have only caught sight of around 140 bursts in their scopes.

Now, a large stationary radio telescope in British Columbia has nearly quadrupled the number of fast radio bursts discovered to date. The telescope, known as CHIME, for the Canadian Hydrogen Intensity Mapping Experiment, has detected 535 new fast radio bursts during its first year of operation, between 2018 and 2019.

Profile photo of Moritz Münchmeyer
Moritz Münchmeyer

Scientists with the CHIME Collaboration, including researchers at the University of Wisconsin–Madison, have assembled the new signals in the telescope’s first FRB catalog, which they will present this week at the American Astronomical Society Meeting.

UW–Madison physics professor Moritz Münchmeyer is a member of CHIME-FRB and contributed to the statistical analysis of the new FRB catalog. He joined UW–Madison this spring and a part of his new group is continuing this work, with the goal of using FRBs as a novel probe of the physics of the universe.

“This is only the beginning of FRB research. For the first time we now have enough FRBs to study their statistical distribution. It turns out that FRBs come from all over the universe, from relatively nearby to half way back to the Big Bang,” Münchmeyer says. “They are also quite frequent, about 800 per day if we were to see them all. They are extremely powerful light sources at cosmological distances and thus provide a new window into the physics of the universe.”

For the full story, please visit https://news.mit.edu/2021/chime-telescope-fast-radio-bursts-0609

The large radio telescope CHIME, pictured here, has detected more than 500 mysterious fast radio bursts in its first year of operation, MIT researchers report. | Image Courtesy of CHIME

Dark Energy Survey releases most precise look at the universe’s evolution

This news piece has been slightly modified from this news story, first published by Fermilab. 

The Dark Energy Survey collaboration has created the largest ever maps of the distribution and shapes of galaxies, tracing both ordinary and dark matter in the universe out to a distance of more than 7 billion light years. The analysis, which includes the first three years of data from the survey, is consistent with predictions from the current best model of the universe, the standard cosmological model. Nevertheless, there remain hints from DES and other experiments that matter in the current universe is a few percent less clumpy than predicted.

New results from the Dark Energy Survey — a large international team that includes researchers from the University of Wisconsin–Madison — use the largest ever sample of galaxies over an enormous piece of the sky to produce the most precise measurements of the universe’s composition and growth to date. Scientists measured that the way matter is distributed throughout the universe is consistent with predictions in the standard cosmological model, the best current model of the universe.

Over the course of six years, DES surveyed 5,000 square degrees — almost one-eighth of the entire sky — in 758 nights of observation, cataloguing hundreds of millions of objects. The results, announced May 27, draw on data from the first three years — 226 million galaxies observed over 345 nights — to create the largest and most precise maps yet of the distribution of galaxies in the universe at relatively recent epochs.

Since DES studied nearby galaxies as well as those billions of light-years away, its maps provide both a snapshot of the current large-scale structure of the universe and a movie of how that structure has evolved over the course of the past 7 billion years.

profile photo of keith bechtol
Keith Bechtol

“This a stringent test of the current standard cosmological paradigm, a model proposing that 95% of the universe is dark matter and dark energy that we do not yet understand,” explains UW–Madison physics professor Keith Bechtol. “By measuring the apparent positions and shapes of hundreds of millions of galaxies in our survey, we test whether the cosmic structures that have formed in the universe today match the predictions based on structures observed in the early universe.”

To test cosmologists’ current model of the universe, DES scientists compared their results with measurements from the European Space Agency’s orbiting Planck observatory. Planck used light signals known as the cosmic microwave background to peer back to the early universe, just 400,000 years after the Big Bang. The Planck data give a precise view of the universe 13 billion years ago, and the standard cosmological model predicts how the dark matter should evolve to the present. If DES’s observations don’t match this prediction, there is possibly an undiscovered aspect to the universe. While there have been persistent hints from DES and several previous galaxy surveys that the current universe is a few percent less clumpy than predicted—an intriguing find worthy of further investigation—the recently released results are consistent with the prediction.

“In the area of constraining what we know about the distribution and structure of matter on large scales as driven by dark matter and dark energy, DES has obtained limits that rival and complement those from the cosmic microwave background,” said Brian Yanny, a Fermilab scientist who coordinated DES data processing and management. “It’s exciting to have precise measurements of what’s out there and a better understanding of how the universe has changed from its infancy through to today.”

a black background with lots of small bright white stars
Ten areas in the sky were selected as “deep fields” that the Dark Energy Camera imaged multiple times during the survey, providing a glimpse of distant galaxies and helping determine their 3-D distribution in the cosmos. Photo: Dark Energy

Ordinary matter makes up only about 5% of the universe. Dark energy, which cosmologists hypothesize drives the accelerating expansion of the universe by counteracting the force of gravity, accounts for about 70%. The last 25% is dark matter, whose gravitational influence binds galaxies together. Both dark matter and dark energy remain invisible and mysterious, but DES seeks to illuminate their natures by studying how the competition between them shapes the large-scale structure of the universe over cosmic time.

DES photographed the night sky using the 570-megapixel Dark Energy Camera on the Victor M. Blanco 4-meter Telescope at the Cerro Tololo Inter-American Observatory in Chile, a Program of the National Science Foundation’s NOIRLab. One of the most powerful digital cameras in the world, the Dark Energy Camera was designed specifically for DES and built and tested at Fermilab. The DES data were processed at the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign.

“These analyses are truly state-of-the-art, requiring artificial intelligence and high-performance computing super-charged by the smartest young scientists around,” said Scott Dodelson, a physicist at Carnegie Mellon University who co-leads the DES Science Committee with Elisabeth Krause of the University of Arizona. “What an honor to be part of this team.”

To quantify the distribution of dark matter and the effect of dark energy, DES relied on two main phenomena. First, on large scales, galaxies are not distributed randomly throughout space but rather form a weblike structure due to the gravity of dark matter. DES measured how this cosmic web has evolved over the history of the universe. The galaxy clustering that forms the cosmic web, in turn, revealed regions with a higher density of dark matter.

images shows a huge camera inside an observatory
The Dark Energy Survey photographed the night sky using the 570-megapixel Dark Energy Camera on the 4-meter Blanco telescope at the Cerro Tololo Inter-American Observatory in Chile, a Program of the National Science Foundation’s NOIRLab. Photo: Reidar Hahn, Fermilab

Second, DES detected the signature of dark matter through weak gravitational lensing. As light from a distant galaxy travels through space, the gravity of both ordinary and dark matter can bend it, resulting in a distorted image of the galaxy as seen from Earth. By studying how the apparent shapes of distant galaxies are aligned with each other and with the positions of nearby galaxies along the line of sight, DES scientists inferred the spatial distribution (or clumpiness) of the dark matter in the universe.

Analyzing the massive amounts of data collected by DES was a formidable undertaking. The team began by analyzing just the first year of data, which was released in 2017. That process prepared the researchers to use more sophisticated techniques for analyzing the larger data set, which includes the largest sample of galaxies ever used to study weak gravitational lensing.

For example, calculating the redshift of a galaxy — the change in light’s wavelength due to the expansion of the universe — is a key step toward measuring how both galaxy clustering and weak gravitational lensing change over cosmic history.  The redshift of a galaxy is related to its distance, which allows the clustering to be characterized in both space and time.

“Redshift calibration is one topic where we significantly improved upon our year-1 data analysis,” said Ross Cawthon, a UW-Madison physics postdoc who led the redshift calibration efforts for two of the main galaxy samples. “We developed new methods and refined old ones. It has been a huge effort by DES members from all over the world.”

Ten regions of the sky were chosen as “deep fields” that the Dark Energy Camera imaged repeatedly throughout the survey. Stacking those images together allowed the scientists to glimpse more distant galaxies. The team then used the redshift information from the deep fields to calibrate measurements of redshift in the rest of the survey region. This and other advancements in measurements and modeling, coupled with a threefold increase in data compared to the first year, enabled the team to pin down the density and clumpiness of the universe with unprecedented precision.

Along with the analysis of the weak-lensing signals, DES also precisely measures other probes that constrain the cosmological model in independent ways: galaxy clustering on larger scales (baryon acoustic oscillations), the frequency of massive clusters of galaxies, and high-precision measurements of the brightnesses and redshifts of Type Ia supernovae. These additional measurements will be combined with the current weak-lensing analysis to yield even more stringent constraints on the standard model.

“DES has delivered cost-effective, leading-edge science results directly related to Fermilab’s mission of pursuing the fundamental nature of matter, energy, space and time,” said Fermilab Director Nigel Lockyer. “A dedicated team of scientists, engineers and technicians from institutions around the world brought DES to fruition.”

The DES collaboration consists of over 400 scientists from 25 institutions in seven countries.

“The collaboration is remarkably young. It’s tilted strongly in the direction of postdocs and graduate students who are doing a huge amount of this work,” said DES Director and spokesperson Rich Kron, who is a Fermilab and University of Chicago scientist. “That’s really gratifying. A new generation of cosmologists are being trained using the Dark Energy Survey.”

UW–Madison physics graduate student Megan Tabbutt was one of the many significant contributors to this work, developing new methods that contributed to an independent validation of the galaxy clustering analysis.

DES concluded observations of the night sky in 2019. With the experience of analyzing the first half of the data, the team is now prepared to handle the complete data set. The final DES analysis is expected to paint an even more precise picture of the dark matter and dark energy in the universe. And the methods developed by the team have paved the way for future sky surveys to probe the mysteries of the cosmos.

“This work represents a ‘big statement’ from the Dark Energy Survey. DES data combined with other observations provide world-leading constraints on the nature of dark energy,” Bechtol says. “At the same time, we are training a new generation of cosmologists, and pioneering advanced methodologies that will be essential to realize the full potential of upcoming galaxy surveys, including the Vera C. Rubin Observatory Legacy Survey of Space and Time.”

The recent DES results were presented in a scientific seminar on May 27. Twenty-nine papers are available on the arXiv online repository.

Dark Energy Survey result video Exploring 7 billion light years of space with the Dark Energy Survey

The Dark Energy Survey is a collaboration of more than 400 scientists from 25 institutions in seven countries. For more information about the survey, please visit the experiment’s website.

Searching for Sources of Gravitational Waves

The entire astrophysical world was blown away by the first-ever binary neutron star collision seen in August 2017 (called ‘GW170817’). This event, identified as a kilonova, was the first to be seen in both gravitational waves, by the LIGO and Virgo detectors, as well as the electromagnetic spectrum, from gamma rays to radio waves (and covered previously in this Oct 2017 DArchive ). Since then, there have been dozens of new gravitational wave events.

A group of researchers in DES, the DESGW team, have focused on finding more electromagnetic counterparts to these gravitational wave events. Members of the Dark Energy Survey — including University of Wisconsin–Madison physics grad student Rob Morgan and postdoc Ross Cawthon, both in Prof. Keith Bechtol’s group —  look at two of the most intriguing events we have followed up with DECam since 2017.

For the full story, please visit The Dark Energy Survey post.

Gage Siebert named 2021 Goldwater Scholar

profile photo of gage siebert
Gage Siebert 

Three University of Wisconsin–Madison students, including junior Physics and Math major Gage Siebert, have been named 2021 winners of the Barry Goldwater Scholarship, considered the country’s preeminent undergraduate scholarship in the natural sciences, mathematics and engineering.

As a freshman, Siebert studied the origins of life in Professor David Baum’s lab at the Wisconsin Institute for Discovery. Siebert then interned at the Arecibo Observatory in Puerto Rico, studying the radio emission from several of the millisecond pulsars used in the search for gravitational waves. He later presented this work at a meeting of the American Astronomical Society. For the past two years, Siebert has worked in Professor Peter Timbie’s observational cosmology lab on the Tianlai Array, a radio astronomy experiment built to map hydrogen. He plans to pursue a Ph.D. in physics.

More than 1,250 students were nominated this year from 438 academic institutions; 410 were named Goldwater Scholars. The scholarship program honors the late Sen. Barry Goldwater and was designed to develop highly qualified scientists, engineers and mathematicians. The scholarships were first awarded in 1989. Each scholar will receive up to $7,500 for their senior year of undergraduate study.

This post was adapted from this post originally published by University Communications

 

Welcome, Professor Moritz Münchmeyer!

Profile photo of Moritz Münchmeyer
Moritz Münchmeyer

On January 1, assistant professor Moritz Münchmeyer joined the UW–Madison physics department. He specializes in theoretical and computational cosmology. His research combines theoretical investigation, the analysis of data from different observatories, and the development of machine learning techniques to probe fundamental physics with cosmological data. He joins us from the Perimeter Institute for Theoretical Physics in Waterloo, where he was a Senior Postdoctoral Fellow. To welcome Münchmeyer to the department and to learn more about him and his research, we sat down for a (virtual) interview.

What are your research interests? 

I work at the intersection of theory and observation in cosmology. On the one hand we have the mathematical theories of how the universe works, and then we have observations made by telescopes and detectors. The universe, of course, is incredibly complicated. There are many forces and particles and radiation that all interact with each other. And that makes it often hard to go from observational data to the theory that you’re interested in. We want to know, for example, what were the laws of physics in the very early universe? Or how does the universe evolve? And so, I develop new methods to use the data to probe the theories.

One thing that I’m very excited about now is using techniques from data science and machine learning for cosmology. As everybody knows, there’s a machine learning revolution going on which is having an impact on many fields, including cosmology. But the techniques in machine learning are often developed to do things like object recognition in images. They do not necessarily work well for the kind of data that we have, which has very different properties and is described by physical theories. So, I’m trying to adapt these machine learning techniques, or find new ones, that are specifically suited for the problems of cosmology.

I also work on new theoretical ideas to use observational data. There will be a huge influx of new cosmological data in the next decade: many experiments are being built and they are often much better than previous experiments. We’ll get amazing new data of the universe and I’m thinking about how to use this data to learn more about fundamental physics, for example by combining different data sources in new ways that have not been explored before.

What is the source of the data you use in your research?

 When I started in cosmology, I became a member of the Planck satellite collaboration, which was a Cosmic Microwave Background (CMB) experiment. Many of the best measurements of cosmological parameters, such as the age of the universe, come from Planck. Of course, now we are building even better CMB experiments, such as the Simons Observatory which I am a member of. In about two years it will start to take precision measurements of the radiation from the early universe. I am also a member of the CHIME experiment, which is detecting Fast Radio Bursts, a new exciting source of data for cosmology and astrophysics. In Madison I am looking to also become involved with Vera Rubin Observatory, one the major upcoming galaxy surveys, which can be combined with CMB experiments. Prof. Keith Bechtol in the physics department is a leading contributor to this experiment. As a theorist, I am not involved much in the data taking process, but once the data is taken, my group will work on its analysis with the methods we have developed.

Once you settle into your new role here, what are the first research projects your group will start on? 

The broad subject we’ll work on is to learn about the initial conditions of the universe from CMB and galaxy data. We will develop new statistical tools and machine learning methods towards this goal. We will also think about new ideas to use cosmological data, such as the Fast Radio Bursts I mentioned before.

What hobbies and interests do you have?  

I have a family with two young children, so I like to go on adventures with them. I also play piano, especially to get my mind off physics. My current favorite sport is Brazilian Jiu-Jitsu. I’ve also always been interested in entrepreneurship. A few years ago, I co-founded a small company, Wolution, which uses machine learning — not in cosmology, but for image analyses in bio sciences, agriculture, and other fields.

What is your favorite element and/or elementary particle? 

My favorite elementary particle is the photon, because it’s extremely versatile: the entire electromagnetic spectrum, like radio waves and x-rays and of course visible light. All the experiments I mentioned above fundamentally detect photons.

Dark Energy Survey makes public catalog of nearly 700 million astronomical objects

Note: this post is adapted from this article, originally published by Fermilab

The Dark Energy Survey, a global collaboration including researchers at the University of Wisconsin–Madison, has released DR2, the second data release in the survey’s seven-year history. DR2 was the topic of sessions at the 237th Meeting of the American Astronomical Society, which was held virtually January 10-15.

The second data release from the Dark Energy Survey, or DES, is the culmination of over a half-decade of astronomical data collection and analysis with the ultimate goal of understanding the accelerating expansion of the universe and the phenomenon of dark energy, which is thought to be responsible for this accelerated expansion. It is one of the largest astronomical catalogs released to date. Keith Bechtol, assistant professor of physics at UW–Madison, has served as the DES Science Release co-coordinator since 2017, guiding the effort to assemble, scientifically validate, and document data releases for both cosmology analysis by the DES Collaboration and exploration by the broad astronomical community.

profile photo of keith bechtol
Keith Bechtol

Including a catalog of nearly 700 million astronomical objects, DR2 builds on the 400 million objects cataloged with the survey’s prior data release, or DR1, and also improves on it by refining calibration techniques, which, with the deeper combined images of DR2, lead to improved estimates of the amount and distribution of matter in the universe.

Astronomical researchers around the world can access these unprecedented data and mine them to make new discoveries about the universe, complementary to the studies being carried out by the Dark Energy Survey collaboration. The full data release is online and available to the public to explore and gain their own insights as well.

“Most of the nearly 700 million objects visible in DES DR2 images had never been seen by humans before the past few years,” Bechtol says. “If you take a moment to look at even a small patch of sky in the DES images, you can see asteroids of our Solar System, stars out to the edge of the Milky Way, and distant galaxies as they were billions of years ago. We look forward to see how our colleagues use this enormous new dataset for research and education.”

DES was designed to map hundreds of millions of galaxies and to discover thousands of supernovae in order to measure the history of cosmic expansion and the growth of large-scale structure in the universe, both of which reflect the nature and amount of dark energy in the universe. DES has produced the largest and most accurate dark matter map from galaxy weak lensing to date, as well as a new map, three times larger, that will be released in the near future.

One early result relates to the construction of a catalog of a type of pulsating star known as “RR Lyrae,” which tells scientists about the region of outer space beyond the edge of our Milky Way. In this area nearly devoid of stars, the motion of the RR Lyrae hints at the presence of an enormous “halo” of invisible dark matter, which may provide clues on how our galaxy was assembled over the last 12 billion years. In another result, DES scientists used the extensive DR2 galaxy catalog, along with data from the LIGO experiment, to estimate the location of a black hole merger and, independent of other techniques, infer the value of the Hubble constant, a key cosmological parameter. Combining their data with other surveys, DES scientists have also been able to generate a complete map of the Milky Way’s dwarf satellites, giving researchers insight into how our own galaxy was assembled and how it compares with cosmologists’ predictions.

Covering 5,000 square degrees of the southern sky (one-eighth of the entire sky) and spanning billions of light-years, the survey data enables many other investigations in addition to those targeting dark energy, covering a vast range of cosmic distances — from discovering new nearby solar system objects to investigating the nature of the first star-forming galaxies in the early universe.

a mostly-black photo of space with white and off-white and blue dots of stars, more concentrated in the middle of the photo and representing the irregular dwarf galaxy
This irregular dwarf galaxy, named IC 1613, contains some 100 million stars (bluish in this portrayal). It is a member of our Local Group of galaxy neighbors, a collection which also includes our Milky Way, the Andromeda spiral and the Magellanic clouds. 2.4 million light-years away, it contains several examples of Cepheid variable stars — key calibrators of the cosmic distance ladder. The bulk of its stars were formed about 7 billion years ago, and it does not appear to be undergoing star formation at the present day, unlike other very active dwarf irregulars such as the Large and Small Magellanic clouds. To the lower right of IC 1613 (oriented with North to the left and East down in this view), one may view a background galaxy cluster (several hundred times more distant than IC 1613) consisting of dozens of orange-yellow blobs, centered on a pair of giant cluster elliptical galaxies. To the left of the irregular galaxy is a bright, sixth magnitude, foreground Milky Way star in the constellation of Cetus the Whale, identified here as a star by its sharp diffraction spikes radiating at 45 degree angles. For coordinate information, visit the NOIRLab webpage for this photo | Photo: DES/NOIRLab/NSF/AURA. | Image processing: DES, Jen Miller (Gemini Observatory/NSF’s NOIRLab), Travis Rector (University of Alaska Anchorage), Mahdi Zamani & Davide de Martin

“This is a momentous milestone. For six years, the Dark Energy Survey collaboration took pictures of distant celestial objects in the night sky. Now, after carefully checking the quality and calibration of the images captured by the Dark Energy Camera, we are releasing this second batch of data to the public,” said DES Director Rich Kron of Fermilab and the University of Chicago. “We invite professional and amateur scientists alike to dig into what we consider a rich mine of gems waiting to be discovered.”

The primary tool in collecting these images, the DOE-built Dark Energy Camera, is mounted to the NSF-funded Víctor M. Blanco 4-meter Telescope, part of the Cerro Tololo Inter-American Observatory in the Chilean Andes, part of NSF’s NOIRLab. Each week, the survey collected thousands of pictures of the southern sky, unlocking a trove of potential cosmological insights.

Once captured, these images (and the large amount of data surrounding them) are transferred to the National Center for Supercomputing Applications for processing via the DES Data Management project. Using the Blue Waters supercomputer at NCSA, the Illinois Campus Cluster and computing systems at Fermilab, NCSA prepares calibrated data products for public and research consumption. It takes approximately four months to process one year’s worth of data into a searchable, usable catalog.

The detailed precision cosmology constraints based on the full six-year DES data set will come out over the next two years.

a dimly-lit domed-top observatory on the left at night, with the glow of the milky way visible in the sky above it
The Dark Energy Survey uses a 570-megapixel camera mounted on the Blanco Telescope, at the CTI Observatory in Chile, to image 5,000 square degrees of southern sky | Photo: Fermilab

The DES DR2 is hosted at the Community Science and Data Center, a program of NOIRLab. CSDC provides software systems, user services and development initiatives to connect and support the scientific missions of NOIRLab’s telescopes, including the Blanco Telescope at Cerro Tololo Inter-American Observatory.

NCSA, NOIRLab and the LIneA Science Server collectively provide the tools and interfaces that enable access to DR2.

“Because astronomical data sets today are so vast, the cost to handle them is prohibitive for individual researchers or most organizations. CSDC provides open access to big astronomical data sets like DES DR2 and the necessary tools to explore and exploit them — then all it takes is someone from the community with a clever idea to discover new and exciting science,” said Robert Nikutta, project scientist for Astro Data Lab at CSDC.

“With information on the positions, shapes, sizes, colors and brightnesses of over 690 million stars, galaxies and quasars, the release promises to be a valuable source for astronomers and scientists worldwide to continue their explorations of the universe, including studies of matter (light and dark) surrounding our home Milky Way galaxy, as well as pushing further to examine groups and clusters of distant galaxies, which hold precise evidence about how the size of the expanding universe changes over time,” said Dark Energy Survey Data Management Project Scientist Brian Yanny of Fermilab.

This work is supported in part by the U.S. Department of Energy Office of Science.

About DES

The Dark Energy Survey is a collaboration of more than 400 scientists from 26 institutions in seven countries. Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, Funding Authority for Studies and Projects in Brazil, Carlos Chagas Filho Foundation for Research Support of the State of Rio de Janeiro, Brazilian National Council for Scientific and Technological Development and the Ministry of Science, Technology and Innovation, the German Research Foundation and the collaborating institutions in the Dark Energy Survey, the list of which can be found at www.darkenergysurvey.org/collaboration.

Massive halo finally explains stream of gas swirling around the Milky Way

a starscape showing the milky way in the distance and a rendering of the gases surrounding the large magellenic cloud
The Large and Small Magellanic Clouds as they would appear if the gas around them was visible to the naked eye. | Credits: Scott Lucchini (simulation), Colin Legg (background)

The Large and Small Magellanic Clouds are satellite galaxies of the Milky Way. They are surrounded by a high-velocity gaseous structure called the Magellanic Stream, which consists of gas stripped from both clouds. So far, simulations have been unable to reconcile observations with a complete picture of how the stream was formed. In this Nature week’s issue, numerical simulations carried out at by Scott Lucchini, graduate student at the Physics Department working with Elena D’Onghia, present a model that potentially resolves this conundrum. By embedding the Large Magellanic Cloud in a corona of ionized gas, the researchers were able to simulate the Magellanic Stream accurately and explain its structure. Ellen Zweibel and Chad Bustard are also co-authors of the article.

Read the full UW news story | Read the Nature article