Nathan Wagner named 2025 Astronaut Scholarship Foundation scholar

This post is adapted from an announcement originally made by the Astronaut Scholarship Foundation

profile photo of Nathan Wagner
Nathan Wagner

The Astronaut Scholarship Foundation recently announced its 2025 class of Astronaut Scholars, including University of Wisconsin–Madison physics and math major Nathan Wagner.

For 2025, a total of 74 undergraduate students from 51 universities and colleges across the United States will each receive up to $15,000. ASF will present this year’s Astronaut Scholars during its Innovators Symposium & Gala featuring the Neil Armstrong™ Award of Excellence on Aug. 13-16, 2025, at the Omni Houston Hotel in Houston, Texas.

Asked what the scholarship means to him, Wagner says:

“I’m humbled to receive this award — it’s a huge honor to represent UW–Madison and its Physics Department on the national level. The Astronaut Scholarship and its benefits are very inspiring and promise to provide years of guidance and mentorship to my fellow 2025 ASF peers and I. I thank the UW–Madison ASF liaison office and its selection committee for nominating me for national consideration. I also thank the many advisors, faculty, primary investigators, supervisors, staff, mentors and family who have supported me to this time in my life. I’m sincerely grateful for the recognition and commit to supporting ASF’s challenge to continue work that will push the boundaries of science and technology.”

“I am thrilled to see Nathan Wagner receiving this recognition for his exceptional dedication and ability as an undergraduate scholar contributing at the forefront of research in atomic and quantum physics,” says UW–Madison physics professor Mark Saffman, Wagner’s research advisor.

Adds UW–Madison physics professor Deniz Yavuz, Wagner’s academic advisor, “Nathan is one of the best undergraduate students that I have ever interacted with. I expect great things from him, and he is fully deserving of this award.”

ASF’s Astronaut Scholarship is offered to junior and senior-year college students pursuing degrees in STEM. The process begins with nominations from professors or faculty members at an ASF-partnering university. Upon selection, each student receives a scholarship up to $15,000. Additional highlights include exclusive mentorship and professional networking with astronauts, alumni and industry leaders. Astronaut Scholars also take part in the Michael Collins Family Professional Development Program and receive a fully funded trip to attend ASF’s Innovators Symposium & Gala, including a technical conference where Astronaut Scholars showcase their cutting-edge research.

ASF awarded its first seven $1,000 scholarships in 1986 to pay tribute to the pioneering Mercury 7 Astronauts — Scott Carpenter, Gordon Cooper, John Glenn, Virgil “Gus” Grissom, Walter Schirra, Alan Shepard and Deke Slayton. The program was championed by the six surviving Mercury 7 Astronauts, along with Betty Grissom (widow of Gus Grissom), Dr. William Douglas (Project Mercury’s flight surgeon) and Orlando philanthropist Henri Landwirth. What began as a powerful tribute, quickly evolved into a national commitment to support exceptional college students pursuing degrees in STEM. Since then, over the past 40 years, more than $10 million has been awarded to more than 850 college students.

Physics major Caleb Youngwerth wins poster prize at APS Eastern Great Lakes meeting

Caleb Youngwerth

Congrats to physics, astronomy-physics, mathematics and french major Caleb Youngwerth on winning the Meeting Award for Undergraduate Student Poster at the Fall 2024 meeting of the Eastern Great Lakes Section of APS!

Youngwerth’s poster, entitled, “Harnessing Molecular Simulation of the DLVO Potential to Engineer New Battery Technologies,” was presented at the meeting held October 18-19 at Marietta College in Ohio. The work was conducted in the chemical and biological engineering group of Prof. Rose Cersonsky.

The award was announced at the meeting and comes with a cash prize.

For more info, read Chemical and Biological Engineering’s story about Caleb: https://engineering.wisc.edu/blog/student-wins-award-for-research-on-colloidal-gels/

Four students named Hilldale Fellows

Four physics majors have earned 2024 Hilldale Fellowships. They are:

  • Erica Magee, Mathematics and Physics major, working with Martin Zanni (Chemistry)
  • Quinn Meece, Astronomy – Physics and Physics major, working with Mark Saffman (Physics)
  • Elias Mettner, Physics major, working with Abdollah Mohammadi (Physics)
  • Leah Napiwocki, Astronomy – Physics and Physics major, working with Marsha Wolf (Astronomy)

The Hilldale Undergraduate/Faculty Research Fellowship provides research training and support to undergraduates at UW–Madison. Students have the opportunity to undertake their own research project in collaboration with UW–Madison faculty or research/instructional academic staff. Approximately 97 – 100 Hilldale awards are available each year.

The student researcher receives a $3,000 stipend (purpose unrestricted) and faculty/staff research advisor receives a $1,000 stipend to help offset research costs (e.g., supplies, books for the research, student travel related to the project).

Two physics students win presentation awards at APS April Meeting

Elias Mettner and Nadia Talbi, both conducting research in high energy physics at UW–Madison, won undergraduate presenter awards at the American Physical Society’s April Meeting.

The meeting, held in Sacramento April 3-6, included seven undergraduate oral presentation sessions with six to eight students in each session. The top two students from each session earned “Top Presenter” awards. Mettner and Talbi were the only two UW–Madison students who gave oral presentations, and both won awards.

profile photo of Elias Mettner
Elias Mettner

Mettner is a physics major working with scientist Abdollah Mohammadi. His talk was titled “Pair Production and Hadron Photoproduction Backgrounds at the Cool Copper Collider.”

The Cool Copper Collider is a proposed electron-positron collider that will help scientists to explore the Higgs boson even further. The electron-positron beam will have some natural decay that converts into particles and is recorded by the detector. Mettner’s research asks how this beam background will impact the detector.

“The detector will record this background, and it could take the place of the data we want or make it harder to reconstruct data,” Mettner says. “It’s important to make sure that the backgrounds that will come into the detector using this new design will not cause any issues, otherwise the benefits of this collider design cannot be put to their maximum use.”

Mettner had been interested in physics from a young age and comes from a family of teachers who encouraged him to explore his academic interests. Upon entering UW–Madison, he jumped at the chance to conduct research in particle physics. He joined the UW CMS Collaboration in his freshman year through the Undergraduate Research Scholars program and began his project with the Cool Copper Collider soon after. He was also awarded the Sophomore Research Fellowship for his junior year and the Hilldale Research Fellowship for his upcoming senior year.

a woman stands in front of a screen with a powerpoint presentation title slide showing
Nadia Talbi presents at APS April Meeting

Talbi is an astronomy-physics major working in physics professor Tulika Bose’s group and mentored by postdoc Charis Koraka. Her talk, “A Search for Vector-Like Leptons: Compact Analysis,” covered work she has done through a Thaxton Fellowship.

“Bosons are force particles, and basically every boson except for the Higgs — the photon, the gluon — is a vector boson. Leptons are electrons, muons, neutrinos, stuff like that,” Talbi explains. “Vector-like leptons are a hypothetical particle, we don’t know whether or not they exist.”

Talbi was drawn to astronomy because she has long had an interest in the fundamental nature of the universe. As a child, she read an article on Dark Matter and, later, a friend gave her a book on the Standard Model. She was hooked. When she applied for the Thaxton Fellowship, a departmental program that was started to provide more equitable access to undergraduate research in physics, she discussed her interest in particle physics and the research at CERN, which landed her in Bose’s group.

“So before I even had any formal education in physics, where things can be very black and white, I’ve had the opportunity to understand the beautiful things within the field,” Talbi says. “Studying physics, I think, gives you some of the most fundamental understanding of our existence.”

Both Metter and Talbi say that attending conference was overall a very worthwhile experience — even if they both had to take an E+M exam remotely before presenting. (“It was a good bonding experience,” Talbi says.)

“The conference was a lot of fun, and worth it to go and make some connections and experience a bunch of really interesting research from people all in different stages of their careers,” Mettner says.

Adds Talbi: “There were so many undergraduates there, I met so many, I made a lot of friends. It felt like there was a community.”

Both students were also invited to present their award-winning talks to the Physics Board of Visitors spring meeting.

Physics students inducted into Phi Beta Kappa

This post is modified from one originally published by University Communications

On Saturday, April 13, physics students Will Cerne and William Griffin were among the 168 University of Wisconsin–Madison Letters & Science undergraduates inducted to the Phi Beta Kappa (ΦΒΚ) academic society. The induction ceremony was held at Varsity Hall in Union South with 350 attending.

In addition to the induction of new undergraduate members, the ceremony also honored four individuals for their contributions to UW–Madison, including Jimena González, a member of the UW–Madison chapter of the Edward A. Bouchet Society and a PhD candidate in Physics (observational cosmology). González accepted one of ΦΒΚ’s graduate student induction invitation.

UW–Madison’s ΦΒΚ chapter, founded in 1899, seeks to honor students who rigorously explore the sciences, arts and humanities.

L&S Dean Eric M. Wilcots led the opening procession and welcome. Chapter President David W. Johnson, economics, hosted the celebration’s 125th year of the founding of the UW–Madison chapter of Phi Beta Kappa. Special guest and president of the national Phi Beta Kappa Society Peter Quimby PhD’99 presented the history of ΦΒΚ. ΦΒΚ stands for philosophia biou kubernetes, which translates to “the love of wisdom is the helmsman of life.”

Inductees excel in all areas of study, ranging from physics to anthropology, and they must have a cumulative GPA of 3.80 or above and meet strenuous math, language, and breadth requirements.

A committee of faculty and staff review the student record for nomination into the chapter. Inductees have a love for learning in multiple areas of study at the intermediate and advanced levels, exploring far beyond their major area of study at UW–Madison.

Jim Reardon wins WISCIENCE Lillian Tong Teaching Award

Each year, the University of Wisconsin–Madison recognizes outstanding academic staff members who have excelled in leadership, public service, research and teaching. These exceptional individuals bring the university’s mission to life and ensure that the Wisconsin Idea extends far beyond the campus and the state. Ten employees won awards this year, including Dr. Jim Reardon, Director of Undergraduate Program with the department of physics.

Jim Reardon’s love of running and his excellence as a physics instructor recently came together in the classroom in a big way with Physics 106: The Physics of Sports, a course he developed and now teaches. The new course applies physical principles to competitive sports, helping students better understand athletic performance. It’s proven exceptionally popular, attracting almost 140 students in only its third semester.

action shot of Jim Reardon teaching
Jim Reardon, director of undergraduate program in the Department of Physics at the University of Wisconsin–Madison, is pictured while teaching during a Physics 106 class held in Chamberlin Hall on March 20, 2024. Kaul is one of ten recipients of a 2024 Academic Staff Excellence Award (ASEA). (Photo by Bryce Richter / UW–Madison)

Reardon’s expertise at course development, his mastery at instruction and his exemplary support of teaching assistants have made him indispensable to the Physics Department. As director of the undergraduate program, he implemented standardized assessments in the department’s large introductory courses. This provided a baseline for successful course modifications and allowed nationwide peer assessment comparisons. As the administrator of the teaching assistant program, Reardon expertly matches the strengths of TAs with the needs of the department.

Reardon is no less valued in the classroom. Students routinely give him the highest of marks. Writes one, “I have never seen a professor or teacher work so effectively and patiently to ensure his students understood the information.”

“Jim is unique in his broad and ready grasp of the subject matter combined with a passion for teaching and making sure that ALL students have access to that subject matter.”

— Sharon Kahn, graduate program manager, Department of Physics

Bringing the Quantum to the Classical: A Hybrid Simulation of Supernova Neutrinos

By Daniel Heimsoth, Physics PhD student

Simulating quantum systems on classical computers is currently a near-impossible task, as memory and computation time requirements scale exponentially with the size of the system. Quantum computers promise to solve this scalability issue, but there is just one problem: they can’t reliably do that right now because of exorbitant amounts of noise. 

So when UW–Madison physics postdoc Pooja Siwach, former undergrad Katie Harrison BS ‘23, and professor Baha Balantekin wanted to simulate neutrino evolution inside a supernova, they needed to get creative.  

profile photo of Pooja Siwach
Pooja Siwach

Their focus was on a phenomenon called collective neutrino oscillations, which describes a peculiar type of interaction between neutrinos. Neutrinos are unique among elementary particles in that they change type, or flavor, as they propagate through space. These oscillations between flavors are dictated by the density of neutrinos and other matter in the medium, both of which change from the core to the outer layers of a supernova. Physicists are interested in how the flavor composition of neutrinos evolve in time; this is calculated using a time evolution simulation, one of the most popular calculations currently done on quantum computers.  

Ideally, researchers could calculate each interaction between every possible pair of neutrinos in the system. However, supernovae produce around 10^58 neutrinos, a literally astronomical number. “It’s really complex, it’s very hard to solve on classical computers,” Siwach says. “That’s why we are interested in quantum computing because quantum computers are a natural way to map such problems.” 

profile photo of Katie Harrison
Katie Harrison

This naturalness is due to the “two-level” similarities between quantum computers and neutrino flavors. Qubits are composed of two-level states, and neutrino flavor states are approximated as two levels in most physical systems including supernovae.  

In a paper published in Physical Review D in October, Siwach, Harrison, and Balantekin studied the collective oscillation problem using a quantum-assisted simulator, or QAS, which combines the benefits of the natural mapping of the system onto qubits and classical computers’ strength in solving matrix equations. 

In QAS, the interactions between particles are broken down into a linear combination of products of Pauli matrices, which are the building blocks for quantum computing operations, while the state itself is split into a sum of simpler states. The quantum portion of the problem then boils down to computing products of basis states with each Pauli term in the interaction. These products are then inputted into the oscillation equations.

a graph with 4 neutrino traces in 4 colors
Flavor composition (y-axis) of four supernova neutrinos over time due to collective oscillations, calculated using the quantum-assisted simulator. The change in flavor for each neutrino over time shows the effect of neutrino-neutrino interactions.

“Then we get the linear-algebraic equations to solve, and solving such equations on a quantum computer requires a lot of resources,” explains Siwach. “That part we do on classical computers.”  

This approach allows researchers to use the quantum computers only once before the actual time evolution simulation is done on a classical computer, avoiding common pitfalls in quantum calculations such as error accumulation over the length of the simulation due to noisy gates. The authors showed that the QAS results for a four-neutrino system match with a pure classical calculation, showcasing the power of this approach, especially compared to a purely quantum simulation which quickly deviates from the exact solution due to accumulated errors from gates controlling two qubits at the same time. 

Still, as with any current application of quantum computers, there are limitations. “There’s only so much information that we can compute in a reasonable amount of time [on quantum computers],” says Siwach. She also laments the scalability of both the QAS and full quantum simulation. “One more hurdle is scaling to a larger number of neutrinos. If we scale to five or six neutrinos, it will require more qubits and more time, because we have to reduce the time step as well.” 

Harrison, who was an undergraduate physics student at UW–Madison during this project, was supported by a fellowship from the Open Quantum Initiative, a new program to expand undergrad research experiences in quantum computing and quantum information science. She enjoyed her time in the program and thinks that it benefits students looking to get involved in research in the field: “I think it’s really good for students to see what it really means to do research and to see if it’s something that you’re capable of doing or something that you’re interested in.” 

trace of neutrino flavor composition over time comparing a quantum simulation to a full classical one
Flavor composition of a neutrino over time using a full quantum simulation (red points) compared to exact solution (black line). The points start to drift from the exact solution after only a few oscillations, highlighting how noise in the quantum computer negatively affects the calculation.

 

Physics major Nathan Wagner awarded Goldwater Scholarship

This story is modified from one published by University Communications

Physics and mathematics major Nathan Wagner is one of four UW–Madison students named as winners of 2024 Goldwater Scholarships, the premier undergraduate scholarship in mathematics, engineering and the natural sciences in the United States.

The scholarship program honors the late Sen. Barry Goldwater and is designed to foster and encourage outstanding students to pursue research careers.

“I’m so proud of these four immensely talented scholars and all they’ve accomplished,” says Julie Stubbs, director of UW’s Office of Undergraduate Academic Awards. “Their success also reflects well on a campus culture that prioritizes hands-on research experiences for our undergraduates and provides strong mentoring in mathematics, engineering and the natural sciences.”

The other UW–Madison students are juniors Katarina Aranguiz and Scott Chang and sophomore Max Khanov .

A Goldwater Scholarship provides as much as $7,500 each year for up to two years of undergraduate study. A total of 438 Goldwater Scholars were selected this year from a field of 1,353 students nominated by their academic institutions.

profile picture of Nathan Wagner
Nathan Wagner (Photo by Taylor Wolfram / UW–Madison)

Sophomore Nathan Wagner of Madison, Wisconsin

Wagner is majoring in physics and mathematics. Wagner began research in Professor Mark Saffman’s quantum computing lab in spring 2021 as a high school junior. His first-author manuscript, “Benchmarking a Neutral-Atom Quantum Computer” was recently accepted for publication in the International Journal of Quantum Information. In Summer 2023, Wagner started research with the Physics Department’s High Energy Physics Group, working alongside Professor Sridhara Dasu and others on future particle colliders design research. Wagner was invited to present his research at the Department of Physics Board of Visitors meeting in fall 2023. This summer, he will complete a research internship at Argonne National Laboratory near Chicago, focusing on computational physics. Wagner plans to pursue a PhD in physics and a career at a U.S. Department of Energy national laboratory researching novel carbon-neutral energy generation, quantum computing and networking, nuclear photonics and computational physics.

About the Goldwater Scholarship

Congress established the Barry Goldwater Scholarship and Excellence in Education Foundation in 1986. Goldwater served in the U.S. Senate for over 30 years and challenged Lyndon B. Johnson for the presidency in 1964. A list of past winners from UW–Madison can be found here.

Undergraduates named 2023 Hilldale Fellows

Physics major Dhanvi Hiriyanna Bharadwaj has been named a 2023 Hilldale Fellow, working with Ramathasan Thevamaran in Mechanical Engineering. Astronomy-physics major Vicki Braianova, who is working with physics professor Peter Timbie, has also received the award.

The Hilldale Undergraduate/Faculty Research Fellowship provides research training and support to undergraduates at UW–Madison. Students have the opportunity to undertake their own research project in collaboration with UW–Madison faculty or research/instructional academic staff. Approximately 97 – 100 Hilldale awards are available each year.

Two students receive Sophomore Research Fellowships

Two physics majors have received a UW–Madison Sophomore Research Fellowship as a fellow or honorable mention. The students are:

  • Erica MageeMathematics, Physics; working with Martin Zanni (Chemistry)
  • Elias MettnerPhysics; working with Abdollah Mohammadi (Physics)

The fellowships include a stipend to each student and to their faculty advisers. Fellowships are funded by grants from the Brittingham Wisconsin Trust and the Kemper K. Knapp Bequest, with additional support from UW-System, the Chancellor’s Office and the Provost’s Office.