Flexible, easy-to-scale nanoribbons move graphene toward use in tech applications

greyscale scanning electron micrograph of graphene nanoribbons that looks like an intricate fingerprint. has also been described as a "zen garden"

From radio to television to the internet, telecommunications transmissions are simply information carried on light waves and converted to electrical signals.

Joel Siegel

Silicon-based fiber optics are currently the best structures for high-speed, long distance transmissions, but graphene — an all-carbon, ultra-thin and adaptable material — could improve performance even more.

In a study published April 16 in ACS Photonics, University of Wisconsin–Madison researchers fabricated graphene into the smallest ribbon structures to date using a method that makes scaling-up simple. In tests with these tiny ribbons, the scientists discovered they were closing in on the properties they needed to move graphene toward usefulness in telecommunications equipment.

“Previous research suggested that to be viable for telecommunication technologies, graphene would need to be structured prohibitively small over large areas, (which is) a fabrication nightmare,” says Joel Siegel, a UW–Madison graduate student in physics professor Victor Brar’s group and co-lead author of the study. “In our study, we created a scalable fabrication technique to make the smallest graphene ribbon structures yet and found that with modest further reductions in ribbon width, we can start getting to telecommunications range.”

For the full story, please visit: https://news.wisc.edu/flexible-easy-to-scale-nanoribbons-move-graphene-toward-use-in-tech-applications/

Searching for Sources of Gravitational Waves

a colorful graph showing degrees of sky on a graph's axes and plots of data indicating where gravitational waves may have come from

The entire astrophysical world was blown away by the first-ever binary neutron star collision seen in August 2017 (called ‘GW170817’). This event, identified as a kilonova, was the first to be seen in both gravitational waves, by the LIGO and Virgo detectors, as well as the electromagnetic spectrum, from gamma rays to radio waves (and covered previously in this Oct 2017 DArchive ). Since then, there have been dozens of new gravitational wave events.

A group of researchers in DES, the DESGW team, have focused on finding more electromagnetic counterparts to these gravitational wave events. Members of the Dark Energy Survey — including University of Wisconsin–Madison physics grad student Rob Morgan and postdoc Ross Cawthon, both in Prof. Keith Bechtol’s group —  look at two of the most intriguing events we have followed up with DECam since 2017.

For the full story, please visit The Dark Energy Survey post.