Jimena González joins Bouchet Graduate Honor Society

This story was originally posted by the Graduate School

Five outstanding scholars, including Physics PhD student Jimena González, are joining the UW–Madison chapter of the national Edward Alexander Bouchet Graduate Honor Society this academic year.

profile picture of Jimena Gonzalez
Jimena González

The Bouchet Society commemorates the first person of African heritage to earn a PhD in the United States. Edward A. Bouchet earned a PhD in Physics from Yale University in 1876. Since then, the Bouchet Society has continued to uphold Dr. Bouchet’s legacy.

“The 2024 Bouchet inductees are making key contributions in their disciplines, as well as to the research, education, and outreach missions of our campus. They truly embody the Wisconsin Idea and are exemplary in every way,” said Abbey Thompson, assistant dean for diversity, inclusion, and funding in the Graduate School.

The Bouchet Society serves as a network for scholars that uphold the same personal and academic excellence that Dr. Bouchet demonstrated. Inductees to the UW–Madison Chapter of the Bouchet Society also join a national network with 20 chapters across the U.S. and are invited to present their work at the Bouchet Annual Conference at Yale University, where the scholars further create connections and community within the national Bouchet Society.

The UW–Madison Division of Diversity, Equity, and Educational Achievement supports each inductee with a professional development grant.

González is a physics PhD candidate specializing in observational cosmology. Her research centers on searching and characterizing strong gravitational lenses in the Dark Energy Survey. These rare astronomical systems can appear as long curved arcs of light surrounding a galaxy. Strong gravitational lenses offer a unique probe for studying dark energy, the driving force behind the universe’s accelerating expansion and, consequently, a pivotal factor in determining its ultimate fate.

During her graduate program, Jimena has received the Albert R. Erwin, Jr. & Casey Durandet Award and the Firminhac Fellowship from the Department of Physics. Additionally, she was honored with the 2023 Open Science Grid David Swanson Award for her outstanding implementation of High-Throughput Computing to advance her research. Jimena has contributed as a co-author to multiple publications within the field of strong gravitational lensing and has presented her work at various conferences. In addition to her academic achievements, Jimena has actively engaged in outreach programs. Notably, she was selected as a finalist at the 2021 UW–Madison Three Minute Thesis Competition and secured a winning entry in the 2023 Cool Science Image Contest. Her commitment to science communication extends to a contribution in a Cosmology chapter in the book AI for Physics. Jimena has also led a citizen science project that invites individuals from all around the world to inspect astronomical images to identify strong gravitational lenses. Jimena obtained her bachelor’s degree in physics at the Universidad de los Andes, where she was awarded the “Quiero Estudiar” scholarship.

Welcome, Professor Vladimir Zhdankin!

profile photo of Vladimir Zhdankin
Vladimir Zhdankin (credit: Flatiron Institute)

Theoretical plasma astrophysicist Vladimir Zhdankin ‘11, PhD ’15, returns to UW–Madison as an assistant professor of physics on January 1, 2024. As a student, Zhdankin worked with Prof. Stas Boldyrev on solar wind turbulence and basic magnetohydrodynamic turbulence, which are relevant for near-Earth types of space plasmas. After graduating, Zhdankin began studying plasma astrophysics of more extreme environments. He first completed a postdoc at CU-Boulder, then a NASA Einstein Fellowship at Princeton University. He joins the department from the Flatiron Institute in New York, where he is currently a Flatiron Research Fellow.

Please give an overview of your research. 

These days, most of my interest is in the field of plasma astrophysics — the application of plasma physics to astrophysical problems. Much of the matter in the universe is in a plasma state, such as stars, the matter around black holes, and the interstellar medium in the galaxy. I’m interested in understanding the plasma processes in those types of systems. My focus is particularly on really high energy systems, like plasmas around black holes or neutron stars, which are dense objects where you could get extreme plasmas where relativistic effects are important. The particles are traveling at very close to the speed of light, and there’s natural particle acceleration occurring in these systems. They also radiate intensely, you could see them from halfway across the universe. There’s a need to know the basic plasma physics in these conditions if you want to interpret observations of those systems. A lot of my work involves doing plasma simulations of turbulence in these extreme parameter regimes.

What are one or two research projects you’ll focus on the most first?

One of them is on making reduced models of plasmas by using non-equilibrium statistical mechanical ideas. Statistical mechanics is one of the core subjects of physics, but it doesn’t really seem to apply to plasmas very often. This is because a lot of plasmas are in this regime that’s called collisionless plasma, where they are knocked out of thermal equilibrium, and then they always exist in a non-thermal state. That’s not what standard statistical mechanics is applicable to. This is one of the problems that I’m studying, whether there is some theoretical framework to study these non-equilibrium plasmas, to understand basic things like: what does it mean for entropy to be produced in these types of plasmas? The important application of this work is to explain how are particles accelerated to really high energies in plasmas. The particle acceleration process is important for explaining cosmic rays which are bombarding the Earth, and then also explaining the highest energy radiation which we see from those systems.

Another thing I’m thinking about these days is plasmas near black holes. In the center of the Milky Way, for example, there’s a supermassive black hole called Sagittarius A*, which was recently imaged a year or two ago by the Event Horizon Telescope. It’s a very famous picture. What you see is the shape of the black hole and then all the plasma in the vicinity, which is in the accretion disk. I’m trying to understand the properties of that turbulent plasma and how to model the type of radiation coming out of the system. And then also whether we should expect neutrinos to be coming out, because you would need to get very high energy protons in order to produce neutrinos. And it’s still an open question of whether or not that happens in these systems.

What attracted you to UW–Madison?

It’s just a perfect match in many ways. It really feels like a place where I’m confident that I could succeed and accomplish my goals, be an effective mentor, and build a successful group. It has all the resources I need, it has the community I need as a plasma physicist to interact with. I think it has a lot to offer to me and likewise, I have a lot to offer to the department there. I’m also really looking forward to the farmers’ market and cheese and things like that. You know, just the culture there.

What is your favorite element and/or elementary particle?

I like the muon. It is just a heavy version of the electron, I don’t remember, something like 100 times more massive or so. It’s funny that such particles exist and this is like the simplest example of one of those fundamental particles which we aren’t really familiar with, it’s just…out there. You could imagine situations where you just replace electron with a muon and then you get slightly different physics out of it.

What hobbies and interests do you have?

They change all the time. But some things I’ve always done: I like running, skiing, bouldering indoors, disk golf, racquet sports, and hiking. (Cross country or downhill skiing?) It’s honestly hard to choose which one I prefer more. In Wisconsin, definitely cross country. If I’m in real mountains, the Alps or the Rockies, then downhill is just an amazing experience.

Welcome, Professor Matthew Otten!

profile photo of Matt Otten
Matthew Otten

Atomic, molecular and optical and quantum theorist Matthew Otten will join the UW–Madison physics department as an assistant professor on January 3, 2024. He joins us most recently from HRL Laboratories. Prior to HRL, Otten earned his PhD from Cornell University, and then was the Maria Goeppert Mayer fellow at Argonne National Laboratory.

Please give an overview of your research.

Very generally, my goal is to make utility scale quantum computing a reality, and to get there faster than we would otherwise without my help. We have a lot of theoretical reasons to believe that quantum algorithms will be faster in certain areas; in practice, we need to know how expensive it’s going to be. It could be that a back of the envelope calculation says a quantum computer might be better, but because quantum computers are very expensive to build and have a lot of overhead, you could find that once you crunch the numbers really carefully, it turns out to cost more money or more energy or more time than just doing it on a supercomputer. In that case, it’s not worth the investment to build it, or at least not at this point. Part of my research is to understand and develop quantum algorithms and count how expensive they are. Once you do that, you can figure out the reason it’s so expensive is A and B. Then we go and we try to fix A and B, and then whack-a-mole all these bottlenecks down and eventually you go from, “It’ll never work,” to “Okay, it’ll work in twenty years.”

Another part of my research is looking at the physical qubits. These devices all have a lot of deep physics inside of them. If you just look at it from the quantum algorithm level, you might get so far. But if you dig down and try to understand the underlying physics, I think you can get further. You might be able to make devices cheaper, faster, or more performant in general. I do a lot of simulations of the underlying physics of these various types of qubits to understand what their properties are, what causes the noise that ruins computation, and what we can do to fix that noise. Through simulations on classical computers, sometimes very large ones, we come up with ways to tweak the system so that you get better performance, by coming up with better quantum algorithms and better qubits. Put those together and hopefully you get to a better quantum computer.

Once you arrive in Madison, what are one or two research projects you think your group will focus on first?

I’ll be bringing a few projects with me. The first is part of a DARPA program called Quantum Benchmarking, which I was part of while at HRL. We found really high-value computational tasks, not specifically quantum, that Boeing, which owns HRL, would like calculated: for instance, reducing corrosion. Corrosion causes planes to be grounded for maintenance, which is costly. Reducing corrosion will reduce maintenance costs and increase uptime. We’ve been developing ways to ask and answer the question, how close are today’s quantum computers to solving that problem? How big do quantum computers need to be to solve that problem? The specific task is understanding what it takes to solve such a large-scale problem, counting the quantum resources that are necessary and coming up with tests so that you could go to a quantum computer, run the tests, and hopefully be able to predict how much bigger or how much faster they would need to be to solve the problem.

Another one comes from the Wellcome Leap Foundation. We are trying to do the largest, most accurate calculation of biological objects — a molecule, string of carbon, something like this — possible on a real-life quantum computer. We’re trying to take techniques that have already been developed or develop new techniques to make circuits smaller, which means a less expensive quantum computer, and faster. That one is a competition, they gave us funding to do it, but if we complete the task better than other competitors, we get more funding to do more.

What attracted you to UW­–Madison?

The strength of the science that’s happening in the physics and broader Wisconsin community is very attractive. When I visited, everyone was very nice, it’s a very collegial department. And being from St. Louis, I like the Midwest. I’ve lived in Southern California for a couple of years now and I haven’t seen snow, and that’s sad. Madison is a lovely area. Great people.

What is your favorite element and/or elementary particle? 

I think it has to be silicon. Silicon is used in classical computing and potentially has use in quantum computing. And you’re carrying around silicon right now, just like everyone else.

What hobbies and interests do you have? 

I have a Siberian Husky puppy and we’ll be very happy to go to Madison and do a lot of skijoring, which is cross country skiing, but the dog pulls you. I started running recently and I was jazzed up for my first half marathon and then I got COVID and I didn’t do it, so I’m still jazzed up for my first half marathon. I play a lot of board games and have a very large board game collection. And my daughter just turned one. She’s become a new hobby.

Welcome, Professor Rogerio Jorge!

profile photo of Rogerio Jorge
Rogerio Jorge

Plasma theorist Rogerio Jorge will join the UW–Madison physics department as an assistant professor on January 1, 2024. He joins us from IST in Lisbon, Portugal, where he is a research professor. Jorge completed his first postdoc at the University of Maryland at College Park, then accepted a Humboldt Fellowship where he worked on the design of fusion energy devices in Greifswald, Germany.

Please give an overview of your research.

My work is twofold: I uncover basic plasma physics phenomena and apply my plasma physics knowledge to the realization of fusion energy. My most recent work is devoted to the design of Stellarators, a type of fusion machine that is free of major instabilities and disruptions. Here, we try to have this clean renewable energy available to the world as fast as possible. While I’ve been doing research on fusion since my PhD studies, where I focused on one type of device called the Tokamak, when I went to the U.S. for my postdoc, I started focusing on the Stellarator. The Stellarator has had a lot of research since the ’60s, but only recently it had a big resurgence.

Thanks to the enormous progress in computational power, I do a lot of simulations for my work. I have worked on several codes, each focusing on a particular physics or engineering problem such as electromagnetic coils, stability, turbulence, and energy retention, which are all used in combination to do designs for new machines. I also collaborate with startups seeking to rapidly develop fusion energy and supervise students and postdocs who are trying to get new designs for new machines. Most of our work is in the realm of classical physics, based on things that people learn while they’re majoring in physics such as electrodynamics and electromagnetism. But then, we couple it with new computational and mathematical techniques, such as machine learning, to streamline our workflow.

We have ideas for Stellarator design that could allow for much better performance than we had before so that the resulting devices achieve higher temperatures and higher densities. However, we should always take into account that theory and experiment may operate on different planes. We are in contact with experimentalists who sometimes tell us, “Your machine is too complicated to build!” And then we have to go back and incorporate their constraints into the design.

Once you arrive in Madison, what are one or two research projects you think your group will focus on first?

Stellarator design and optimization will be one of the main branches, and we have many projects that either could be started or have started in my research group now that we will be continuing in Madison. One of these topics is the confinement of fast particles resulting from fusion reactions, that is, alpha particle dynamics. These must stay confined long enough to continuously feed energy to the plasma, leading to what we call a burning plasma. Right now, the machines we have, they’re still prototypes, meaning that they haven’t made many studies on the physics of burning plasmas. We still need to do a lot of research on it. Once we turn on the machine and start getting a lot of energy, we must be able to predict what’s going on. Burning plasma physics or fast particle physics is one of the major issues. Besides burning plasma physics, I will also continue the work on stellarator optimization, with a particular focus on how machine learning can help us obtain increasingly better designs and how to incorporate experimental constraints into the optimization. Another branch will be the study of basic plasma physics with a particular focus on astrophysical plasmas. During my PhD, I developed a method to accurately incorporate collisions between charged particles in plasmas. I intend to further develop that technique, creating a numerical tool that is easy to use and can be used to predict extreme events in space, as well as predict the behavior of plasmas in the lab, such as the Wisconsin Plasma Physics Laboratory.

What attracted you to Madison? 

Madison has one of the best physics departments in the world, particularly in my area of plasma physics. I believe it’s one of the top places that people think of when they do the sort of work that I do, stellarators and basic plasma physics. This is because there is here a prototype fusion device, a myriad of experimental plasma physics facilities, and people doing state-of-the-art theory and simulation.  Furthermore, when I visited Madison, I loved the views, the lakes, and the overall quality of life.

What is your favorite element or elementary particle?

I think I like the neutrino. It was fun learning about neutrinos in particle physics. They were thought to have no mass, but their flavors can actually oscillate while they travel, and this yields a very tiny but finite amount of mass. Besides, they can go through essentially everything without getting detected, they’re basically invisible! It’s something that you think you know what it is, and you know all the calculations and you understand it, but at the end of the day experiments and the nature tells you that you don’t exactly know what you think you know. There’s more to the story there and they seem so simple, yet there is more to the story.

What hobbies and interests do you have? 

Definitely music. I play the guitar and I like to learn how to play new instruments. I have a few instruments around the house but the one that I am learning how to play right now is the violin. Like the neutrino, even with only four strings, it’s a deceivingly complicated instrument.

Federal physics advisory panel — including Profs. Bose and Cranmer — announces particle physics recommendations

Earlier this year, physics professors Tulika Bose and Kyle Cranmer were selected to serve on the Particle Physics Project Prioritization Panel, or P5, a group of High Energy Physics experts that advises the Department of Energy Office of Science and the National Science Foundation’s Division of Physics on high energy and particle physics matters.

P5 announced their recommendations in a draft report published Dec. 7 — and UW–Madison physicists are featured in many of the projects.

One recommendation is to move forward with a planned expansion of the IceCube Neutrino Observatory, an international scientific collaboration operated by the UW–Madison at the South Pole. Other recommendations include support for a separate neutrino experiment based in Illinois (the Deep Underground Neutrino Experiment, or DUNE); continuing investment in the Large Hadron Collider in Switzerland and the Rubin Observatory in Chile; and expanding involvement in the Cherenkov Telescope Array (CTA), a ground-based very-high-energy gamma ray observatory. UW–Madison physicists have leading roles in all of these research efforts.

Additional recommendations include the development of a next generation of ground-based telescopes to observe the cosmic microwave background and a direct dark matter detector experiment, among others.

Read the full story

A new spin on an old superconductor means that it can be an ideal spintronic material, too

Back in the 1980s, researchers discovered that a bismuthate oxide material was a rare type of superconductor that could operate at higher temperatures. Now, a team of engineers and physicists at the University of Wisconsin-Madison has found the material, “Ba(Pb,Bi)O3,” is unique in another way: It exhibits extremely high spin orbit torque, a property useful in the emerging field of spintronics.

The combination makes this and similar materials potentially important in developing the next generation of fast, efficient memory and computing devices.

The finding was an encouraging surprise to Chang Beom-Eom, a professor of materials science and engineering, and Mark Rzchowski, a professor of physics, both at UW-Madison. “We’re looking to expand the range of materials that can be used in spintronic applications,” says Rzchowski. “We had known from previous work these oxides have a lot of interesting properties, and so were investigating the spintronic characteristics. We weren’t anticipating such a large effect. The origins of this are not theoretically understood, but we can speculate about some interesting physical mechanisms.”

The paper was published Dec. 5, 2023, in the journal Nature Electronics.

In conventional electronics, positive and negative electric charges are used to flip millions or billions of tiny transistors on semiconductor chips or in memory devices. But in spintronics, magnetic fields, and interactions with other electrons, manipulate a fundamental property of electrons called the spin state, which records information. This is much faster, more energy-efficient and more powerful than current semiconductors and will advance the development of quantum computing and low-power devices.

Read the full story

 

Featured image caption: Chang Beom-Eom, a professor of materials science and engineering, and Mark Rzchowski, a professor of physics, in the lab. Photo: Joel Hallberg.

Ben Woods and team named finalists in 2023 WARF Innovation Awards

Each fall the WARF Innovation Awards recognize some of the best inventions at UW–Madison. WARF receives hundreds of new invention disclosures each year. Of these disclosures, the WARF Innovation Award finalists are considered exceptional in the following criteria:

  • Has potential for high long-term impact
  • Presents an exciting solution to a known important problem
  • Could produce broad benefits for humankind

One of the six finalists comes from Physics. Research Associate Benjamin Woods and a team including Distinguished Scientist Mark Friesen, John Bardeen Prof. of Physics Mark Eriksson, Honorary Associate Robert Joynt, and Graduate Student Emily Joseph developed a quantum device that shows a significant increase in valley splitting, a key property needed for error-free quantum computing. The device features a novel structural composition that turns conventional wisdom on its head.

Two winners, selected from the six finalists, will be announced in WARF’s annual holiday greeting; sign up to receive the greeting here. Each of the two Innovation Award winners receive $10,000, split among UW inventors.

Victor Brar earns NSF CAREER award

Congrats to associate professor Victor Brar on earning an NSF CAREER award! CAREER awards are NSF’s most prestigious awards in support of early-career faculty who have the potential to serve as academic role models in research and education and to lead advances in the mission of their department or organization.

Victor Brar

For this award, Brar will study the flow of electrons in 2D materials, or materials that are only around one atom thick. His group has already shown that when they applied a relatively old technique — scanning tunneling potentiometry, or STP — to 2D materials such as graphene, they could create unexpectedly high-contrast images, where they could track the movement of individual electrons when an electric current was applied. They found that electrons flow like a viscous fluid, a property that had been predicted but not observed directly.

“So now instead of applying electrical bias, we’ll apply a thermal bias, because we know things move from hot to cold, and then image how [electrons] move in that way,” Brar says. “Part of what’s driving this idea is that Professor Levchenko has predicted that if you image the way heat flows through a material, it should also behave hydrodynamically, like a liquid, rather than diffusive, which is how you might imagine it.”

One motivation for this research is to better understand the general flow of fluids, a problem that is often too complex for supercomputers to solve correctly. Because STP visualizes the fluid-like flow of electrons directly, Brar envisions this work as potentially providing a way of solving  fluid mechanics problems by directly imaging flow, without the need of simulations, similar to what is done in wind tunnels.

“Also, there are these predicted phases of electrons that no one has observed before,” Brar says. “We want to be the first to observe them.”

In addition to an innovative research component, NSF proposals require that the research has broader societal impacts, such as working toward greater inclusion in STEM or increasing public understanding of science. Brar’s group is using haptic pens, devices that are commonly used in remote trainings for surgeons and in the gaming community because they give a gentle push back that mimics a realistic touch. By attaching the haptic pen to a scanning tunneling microscope (STM), people holding the pen can “feel” the individual atoms and surfaces that the STM is touching.

“We think materials science is one of those areas where feeling the forces that hold matter together may provide more intuitive than looking at equations,” Brar says. “We’re making virtual crystal lattices that you can touch with the haptic pen and feel how the atoms fix together, but we’re also making it so you can feel the different forces of the different atoms used.”

Brar plans to introduce the haptic pen and atom models into Physics 407 and develop a materials science module for the UW Alumni Association’s Grandparents University. And because the haptic pen relies almost entirely on touch, Brar plans to work with the Wisconsin Council of the Blind and Visually Impaired to improve access to materials science instruction for people with vision impairments.

 

 

“Sandwich” structure found to reduce errors caused by quasiparticles in superconducting qubits

Qubits are notoriously more prone to error than their classical counterparts. While superconducting quantum computers currently use on the order of 100 to 1000 qubits, an estimated one million qubits will be needed to track and correct errors in a quantum computer designed for real-world applications. At present, it is not known how to scale superconducting qubit circuits to this size.

In a new study published in PRX Quantum, UW–Madison physicists from Robert McDermott’s group developed and tested a new superconducting qubit architecture that is potentially more scalable than the current state of the art. Control of the qubits is achieved via “Single Flux Quantum” (SFQ) pulses that can be generated close to the qubit chip. They found that SFQ-based control fidelity improved ten-fold over their previous versions, providing a promising platform for scaling up the number of qubits in a quantum array.

profile photo of Robert McDermott
Robert McDermott
profile photo of Vincent Liu
Vincent Liu

The architecture involves a sandwich of two chips: one chip houses the qubits, while the other contains the SFQ control unit. The new approach suppresses the generation of quasiparticles, which are disruptions in the superconducting ground state that degrade qubit performance.

“This structure physically separates the two units, and quasiparticles on the SFQ chip cannot diffuse to the quantum chip and generate errors,” explains Chuan-Hong Liu, PhD ’23, a former UW–Madison physics graduate student and lead author of the study. “This design is totally new, and it greatly improves our gate fidelities.”

Liu and his colleagues assessed the fidelity of SFQ-based gates through randomized benchmarking. In this approach, the team established operating parameters to maximize the overall fidelity of complex control sequences. For instance, for a qubit that begins in the ground state, they performed long sequences incorporating many gates that should be equivalent to an identity operation; in the end, they measured the fraction of the population remaining in the ground state. A higher measured ground state population indicated higher gate fidelity.

Inevitably, there are residual errors, but the reduced quasiparticle poisoning was expected to lower the error rate and improve gate fidelities — and it did.

four panels showing the new chip architecture. The two on the left just show the two computer chips, and then the top right panel shows them "sandwiched" on top of each other. The bottom right panel is a circuit diagram of the whole setup.
The quantum-classical multichip module (MCM). (a) A micrograph of the qubit chip. (b) A micrograph of the SFQ driver chip. (c) A photograph showing the assembled MCM stack; the qubit chip is outlined in red and the SFQ chip is outlined in blue. (d) The circuit diagram for one qubit-SFQ pair. | From Liu et al, PRX Quantum.

“Most of the gates had 99% fidelity,” Liu says. “That’s a one order of magnitude reduction in infidelity compared to the last generation.”

Importantly, they showed the stability of the SFQ-based gates over the course of a six-hour experimental run.

Later in the study, the researchers investigated the source of the remaining errors. They found that the SFQ unit was emitting photons with sufficient energy to create quasiparticles on the qubit chip. With the unique source of the error identified, Liu and his colleagues can develop ways to improve the design.

“We realized this quasiparticle generation is due to spurious antenna coupling between the SFQ units and the qubit units,” Liu says. “This is really interesting because we usually talk about qubits in the range of one to ten gigahertz, but this error is in the 100 to 1000 gigahertz range. This is an area people have never explored, and we provide a straightforward way to make improvements.”

This study is a collaboration between the National Institute of Standards and Technology, Syracuse University, Lawrence Livermore National Laboratory, and UW–Madison.

This work was funded in part by the National Science Foundation (DMR-1747426); the Wisconsin Alumni Research Foundation (WARF) Accelerator; Office of the Director of National Intelligence, Intelligence Advanced Research Projects Activity (IARPA-20001-D2022-2203120004); and the NIST Program on Scalable Superconducting Computing and the National Nuclear Security Administration Advanced Simulation and Computing Beyond Moore’s Law program (LLNL-ABS-795437).